Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters










Publication year range
1.
Phytother Res ; 38(2): 694-712, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38011416

ABSTRACT

BACKGROUND AND AIM: By using an in vivo phenotypic screening assay in zebrafish, we identified Convolamine, a tropane alkaloid from Convulvus plauricalis, as a positive modulator of the sigma-1 receptor (S1R). The wfs1abKO zebrafish larva, a model of Wolfram syndrome, exhibits an increased visual-motor response due to a mutation in Wolframin, a protein involved in endoplasmic reticulum-mitochondria communication. We previously reported that ligand activating S1R, restored the cellular and behavioral deficits in patient fibroblasts and zebrafish and mouse models. EXPERIMENTAL PROCEDURES: We screened a library of 108 repurposing and natural compounds on zebrafish motor response. KEY RESULTS: One hit, the tropane alkaloid Convolamine, restored normal mobility in wfs1abKO larvae without affecting wfs1abWT controls. They did not bind to the S1R agonist/antagonist binding site nor dissociated S1R from BiP, an S1R activity assay in vitro, but behaved as a positive modulator by shifting the IC50 value of the reference agonist PRE-084 to lower values. Convolamine restored learning in Wfs1∆Exon8 , Dizocilpine-treated, and Aß25-35 -treated mice. These effects were observed at low ~1 mg/kg doses, not shared by Convolvine, the desmethyl metabolite, and blocked by an S1R antagonist. CONCLUSION AND IMPLICATIONS: Convolamine therefore acts as an S1R positive modulator and this pharmacological action is relevant to the traditional use of Shankhpushpi in memory and cognitive protection.


Subject(s)
Alkaloids , Convolvulus , Receptors, sigma , Humans , Mice , Animals , Sigma-1 Receptor , Receptors, sigma/genetics , Receptors, sigma/metabolism , Zebrafish/metabolism , Alkaloids/pharmacology , Cognition
2.
Pharmaceuticals (Basel) ; 15(1)2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35056161

ABSTRACT

A series of coumarin derivatives and isosteres were synthesized from the reaction of triflic intermediates with phenylboronic acids, terminal alkynes, and organozinc compounds through palladium-catalyzed cross-coupling reactions. The in vitro cytotoxic effect of the compounds was evaluated against two non-small cell lung carcinoma (NSCLC) cell lines (A-549 and H2170) and a normal cell line (NIH-3T3) using cisplatin as a reference drug. Additionally, the effects of the most promising coumarin derivative (9f) in reversing the epithelial-to-mesenchymal transition (EMT) in IL-1ß-stimulated A549 cells and in inhibiting the EMT-associated migratory ability in A549 cells were also evaluated. 9f had the greatest cytotoxic effect (CC50 = 7.1 ± 0.8 and 3.3 ± 0.5 µM, respectively against A549 and H2170 cells) and CC50 value of 25.8 µM for NIH-3T3 cells. 9f inhibited the IL-1ß-induced EMT in epithelial cells by inhibiting the F-actin reorganization, attenuating changes in the actin cytoskeleton reorganization, and downregulating vimentin in A549 cells stimulated by IL-1ß. Treatment of A549 cells with 9f at 7 µM for 24 h significantly reduced the migration of IL-1ß-stimulated cells, which is a phenomenon confirmed by qualitative assessment of the wound closure. Taken together, our findings suggest that coumarin derivatives, especially compound 9f, may become a promising candidate for lung cancer therapy, especially in lung cancer promoted by NSCLC cell lines.

3.
Med Chem ; 18(2): 151-169, 2022.
Article in English | MEDLINE | ID: mdl-33593264

ABSTRACT

BACKGROUND: Leishmaniasis is a worldwide health problem, highly endemic in developing countries. Among the four main clinical forms of the disease, visceral leishmaniasis is the most severe, fatal in 95% of cases. The undesired side-effects from first-line chemotherapy and the reported drug resistance search for effective drugs that can replace or supplement those currently used in an urgent need. Aminoguanidine hydrazones (AGH's) have been explored for exhibiting a diverse spectrum of biological activities, in particular the antileishmanial activity of MGBG. The bioisosteres thiosemicarbazones (TSC's) offer a similar biological activity diversity, including antiprotozoal effects against Leishmania species and Trypanosoma cruzi. OBJECTIVES: Considering the impact of leishmaniasis worldwide, this work aimed to design, synthesize, and perform a screening upon L. chagasi amastigotes and for the cytotoxicity of the small "inhouse" library of both AGH and TSC derivatives and their structurally-related compounds. METHODS: A set of AGH's (3-7), TSC's (9, 10), and semicarbazones (11) were initially synthesized. Subsequently, different semi-constrained analogs were designed and also prepared, including thiazolidines (12), dihydrothiazines (13), imidazolines (15), pyrimidines (16, 18) azines (19, 20), and benzotriazepinones (23-25). All intermediates and target compounds were obtained with satisfactory yields and exhibited spectral data consistent with their structures. All final compounds were evaluated against L. chagasi amastigotes and J774.A1 cell line. Molecular docking was performed towards trypanothione reductase using GOLD® software. RESULTS: The AGH's 3i, 4a, and 5d, and the TSC's 9i, 9k, and 9o were selected as valuable hits. These compounds presented antileishmanial activity compared with pentamidine, showing IC50 values ranged from 0.6 to 7.27 µM, maximal effects up to 55.3%, and satisfactory SI values (ranged from 11 to 87). On the other hand, most of the resulting semi-constrained analogs were found cytotoxic or presented reduced antileishmanial activity. In general, TSC class is more promising than its isosteric AGH analogs, and the beneficial aromatic substituent effects are not similar in both series. In silico studies have suggested that these hits are capable of inhibiting the trypanothione reductase from the amastigote forms. CONCLUSION: The promising antileishmanial activity of three AGH's and three TSC's was characterized. These compounds presented antileishmanial activity compared with PTD, showing IC50 values ranged from 0.6 to 7.27 µM, and satisfactory SI values. Further pharmacological assays involving other Leishmania strains are in progress, which will help choose the best hits for in vivo experiments.


Subject(s)
Leishmania infantum , Thiosemicarbazones , Guanidines , Hydrazones/pharmacology , Molecular Docking Simulation , Structure-Activity Relationship , Thiosemicarbazones/pharmacology
4.
J Med Chem ; 64(11): 7555-7564, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34008968

ABSTRACT

RFamide-related peptide-3 (RFRP-3) and neuropeptide FF (NPFF) target two different receptor subtypes called neuropeptide FF1 (NPFF1R) and neuropeptide FF2 (NPFF2R) that modulate several functions. However, the study of their respective role is severely limited by the absence of selective blockers. We describe here the design of a highly selective NPFF1R antagonist called RF3286, which potently blocks RFRP-3-induced hyperalgesia in mice and luteinizing hormone release in hamsters. We then showed that the pharmacological blockade of NPFF1R in mice prevents the development of fentanyl-induced hyperalgesia while preserving its analgesic effect. Altogether, our data indicate that RF3286 represents a useful pharmacological tool to study the involvement of the NPFF1R/RFRP-3 system in different functions and different species. Thanks to this compound, we showed that this system is critically involved in the development of opioid-induced hyperalgesia, suggesting that NPFF1R antagonists might represent promising therapeutic tools to improve the use of opioids in the treatment of chronic pain.


Subject(s)
Analgesics, Opioid/adverse effects , Dipeptides/chemistry , Receptors, Neuropeptide/antagonists & inhibitors , Animals , Cricetinae , Dipeptides/metabolism , Dipeptides/pharmacology , Dipeptides/therapeutic use , Female , Fentanyl/adverse effects , Half-Life , Humans , Hyperalgesia/drug therapy , Hyperalgesia/etiology , Luteinizing Hormone/metabolism , Male , Mice , Mice, Inbred C57BL , Neuropeptides/chemistry , Neuropeptides/metabolism , Neuropeptides/pharmacology , Neuropeptides/therapeutic use , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Receptors, Neuropeptide/metabolism , Receptors, Opioid/chemistry , Receptors, Opioid/metabolism , Structure-Activity Relationship
5.
Curr Top Med Chem ; 21(21): 1900-1921, 2021.
Article in English | MEDLINE | ID: mdl-33655860

ABSTRACT

Trypanosomatidae family belongs to the Kinetoplastida order, which consists of obligatory parasites that affect plants and all classes of vertebrates, especially humans and insects. Among the heteroxenic parasites, Leishmania spp., Trypanosoma cruzi, and T. brucei are protozoa of most significant interest for medicinal chemistry, being etiological agents of Leishmaniasis, Chagas, and Sleep Sickness diseases, respectively. Currently, inefficient pharmacotherapy, especially in chronic phases and low selectivity towards parasite/host cells, justifies the need to discover new drugs to treat them effectively. Among other targets, the sterol 14α-demethylase (CYP51), an enzyme responsible for ergosterol's biosynthesis in Trypanosomatidae parasites, has received more attention in the development of new bioactive compounds. In this context, antifungal ravuconazole proved to be the most promising drug among this class against T. cruzi, being used in combined therapy with Bnz in clinic trials. Non-antifungal inhibitors, such as VFV and VNF, have shown promising results against T. cruzi and T.brucei, respectively, being tested in Bnz-combined therapies. Among the experimental studies involving azoles, compound (15) was found to be the most promising derivative, displaying an IC50 value of 0.002 µM against amastigotes from T. cruzi, in addition to being non-toxic and highly selective towards TcCYP51 (< 25 nM). Interestingly, imidazole analog (16) was active against infectious forms of these three parasites, demonstrating Ki values of 0.17, 0.02, and 0.36 nM for CYP51 from T. cruzi, T. brucei, and L. infantum. Finally, this review will address promising inhibitors targeting sterol 14α-demethylase (CYP51) from Trypanosomatidae parasites, highlighting SAR studies, interactions with this target, and recent contributions and advances in the field, as well.


Subject(s)
14-alpha Demethylase Inhibitors/pharmacology , Antiparasitic Agents/pharmacology , Sterol 14-Demethylase/metabolism , Trypanosomatina/drug effects , Trypanosomatina/enzymology , 14-alpha Demethylase Inhibitors/chemistry , Animals , Antiparasitic Agents/chemistry , Chemistry, Pharmaceutical , Euglenozoa Infections/drug therapy , Euglenozoa Infections/parasitology , Humans
6.
Molecules ; 26(2)2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33450992

ABSTRACT

Mitogen- and Stress-Activated Kinase 1 (MSK1) is a nuclear kinase, taking part in the activation pathway of the pro-inflammatory transcription factor NF-kB and is demonstrating a therapeutic target potential in inflammatory diseases such as asthma, psoriasis and atherosclerosis. To date, few MSK1 inhibitors were reported. In order to identify new MSK1 inhibitors, a screening of a library of low molecular weight compounds was performed, and the results highlighted the 6-phenylpyridin-2-yl guanidine (compound 1a, IC50~18 µM) as a starting hit for structure-activity relationship study. Derivatives, homologues and rigid mimetics of 1a were designed, and all synthesized compounds were evaluated for their inhibitory activity towards MSK1. Among them, the non-cytotoxic 2-aminobenzimidazole 49d was the most potent at inhibiting significantly: (i) MSK1 activity, (ii) the release of IL-6 in inflammatory conditions in vitro (IC50~2 µM) and (iii) the inflammatory cell recruitment to the airways in a mouse model of asthma.


Subject(s)
Drug Design , Guanidines/pharmacology , Protein Kinase Inhibitors/pharmacology , Ribosomal Protein S6 Kinases, 90-kDa/antagonists & inhibitors , Cells, Cultured , Guanidines/chemical synthesis , Guanidines/chemistry , Humans , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Ribosomal Protein S6 Kinases, 90-kDa/metabolism
7.
J Org Chem ; 85(23): 15347-15359, 2020 12 04.
Article in English | MEDLINE | ID: mdl-33197185

ABSTRACT

Herein, we report the diastereoselective synthesis of a 3-amino-1,2,4-oxadiazine (AOXD) scaffold. The presence of a N-O bond in the ring prevents the planar geometry of the aromatic system and induces a strong decrease in the basicity of the guanidine moiety. While DIBAL-H appeared to be the most efficient reducing agent because it exhibited high diastereoselectivity, we observed various behaviors of the Mitsunobu reaction on the resulting ß-aminoalcohol, leading to either inversion or retention of the configuration depending on the steric hindrance in the vicinity of the hydroxy group. The physicochemical properties (pKa and log D) and hepatic stability of several AOXD derivatives were experimentally determined and found that the AOXD scaffold possesses promising properties for drug development. Moreover, we synthesized alchornedine, the only natural product with the AOXD scaffold. Based on a comparison of the analytical data, we found that the reported structure of alchornedine was incorrect and hypothesized a new one.

8.
ChemSusChem ; 13(19): 5137, 2020 Oct 07.
Article in English | MEDLINE | ID: mdl-32931144

ABSTRACT

Invited for this month's cover is the group of Damien Bourgeois at the Marcoule Institute for Separation Chemistry (ICSM). The image shows how a short process chain can efficiently transform our waste into an active catalyst. The Full Paper itself is available at 10.1002/cssc.202001155.

9.
ChemSusChem ; 13(19): 5224-5230, 2020 Oct 07.
Article in English | MEDLINE | ID: mdl-32672412

ABSTRACT

From electronic waste to Pd-catalyzed reaction! The straightforward valuation of palladium recovered from electronic waste is reported here. Following a classical leaching stage, palladium is selectively extracted from a complex aqueous mixture of metallic cations into an organic phase. Afterwards, the judicious choice of a surfactant enables stabilization of palladium during back extraction cycles, and the direct preparation of an aqueous micellar solution, which can be employed in a model Suzuki-Miyaura cross-coupling reaction. Clean phase separation is observed, and distribution of all components between organic and aqueous phases is mastered. The proposed process avoids several waste generating steps dedicated to palladium isolation and ultimate purification, as well as the preparation of palladium pre-catalyst. This novel approach enables a better use of both natural resources and industrial wastes, through new cycles in circular economy.

10.
Curr Pharm Des ; 26(33): 4112-4150, 2020.
Article in English | MEDLINE | ID: mdl-32611290

ABSTRACT

Neglected parasitic diseases are a group of infections currently considered as a worldwide concern. This fact can be attributed to the migration of these diseases to developed and developing countries, associated with therapeutic insufficiency resulted from the low investment in the research and development of new drugs. In order to overcome this situation, bioprospecting supports medicinal chemistry in the identification of new scaffolds with therapeutically appropriate physicochemical and pharmacokinetic properties. Among them, we highlight the nitrogenous heterocyclic compounds, as they are secondary metabolites of many natural products with potential biological activity. The objective of this work was to review studies within a 10-year timeframe (2009- 2019), focusing on the pharmacological application of nitrogen bioprospectives (pyrrole, pyridine, indole, quinoline, acridine, and their respective derivatives) against neglected parasitic infections (malaria, leishmania, trypanosomiases, and schistosomiasis), and their application as a template for semi-synthesis or total synthesis of potential antiparasitic agents. In our studies, it was observed that among the selected articles, there was a higher focus on the attempt to identify and obtain novel antimalarial compounds, in a way that an extensive amount of studies involving all heterocyclic nitrogen nuclei were found. On the other hand, the parasites with the lowest number of publications up until the present date have been trypanosomiasis, especially those caused by Trypanosoma cruzi, and schistosomiasis, where some heterocyclics have not even been cited in recent years. Thus, we conclude that despite the great biodiversity on the planet, little attention has been given to certain neglected tropical diseases, especially those that reach countries with a high poverty rate.


Subject(s)
Bioprospecting , Leishmania , Neglected Diseases , Parasitic Diseases , Animals , Humans , Neglected Diseases/drug therapy , Nitrogen , Parasitic Diseases/drug therapy
11.
J Neuroendocrinol ; 32(1): e12796, 2020 01.
Article in English | MEDLINE | ID: mdl-31536662

ABSTRACT

Translocator protein 18 kDa (TSPO) is a mitochondrial protein located in the outer membrane and involved in cholesterol translocation, a prerequisite for steroid biosynthesis. TSPO modulation also appears to play a role in other mitochondrial functions, including mitochondrial respiration and cell survival. In the central nervous system, its expression is up-regulated in neuropathology such as Alzheimer's disease (AD). Previously, we demonstrated that two new TSPO ligands, named 2a and 2b, stimulated pregnenolone synthesis and ATP production in a cellular model of AD overproducing ß-amyloid peptide. The present study aimed to evaluate the impact of the new TSPO ligands on mitochondrial dysfunction in a cellular model of AD-related tauopathy (human neuroblastoma cells SH-SY5Y stably overexpressing the P301L-mutant Tau) presenting mitochondrial impairments, including a decreased ATP synthesis and mitochondrial membrane potential, as well as a decrease in pregnenolone synthesis compared to control cells. The effects of our new ligands were compared with those of TSPO ligands described in the literature (XBD173, SSR-180,575 and Ro5-4864). The TSPO ligands 2a and 2b exerted beneficial mitochondrial modulatory effects by increasing ATP levels and mitochondrial membrane potential, paralleled by an increase of pregnenolone levels in mutant Tau cells, as well as in control cells. The compounds 2a and 2b showed effects on mitochondrial activity similar to those obtained with the TSPO ligands of reference. These findings indicate that the new TSPO ligands modulate the mitochondrial bioenergetic phenotype as well as the de novo synthesis of neurosteroids in a cellular model of AD-related tauopathy, suggesting that these compounds could be potential new therapeutic tools for the treatment of AD.


Subject(s)
Mitochondria/drug effects , Receptors, GABA/metabolism , Tauopathies/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Energy Metabolism/drug effects , Humans , Ligands , Mitochondria/metabolism
12.
Neurochem Int ; 134: 104647, 2020 03.
Article in English | MEDLINE | ID: mdl-31877349

ABSTRACT

BACKGROUND: Neonatal sepsis is defined as a systemic inflammatory response caused by a suspected or proven infection, occurring in the first month of life, and remains one of the main causes of morbidity and mortality in newborn and preterm infants. Frequently, survivors of neonatal sepsis have serious long-term cognitive impairment and adverse neurologic outcomes. There is currently no specific drug treatment for sepsis. Indole-3-guanylhydrazone hydrochloride (LQM01) is an aminoguanidine derivative that has been described as an anti-inflammatory, antihypertensive and antioxidant with potential applicability in inflammatory diseases. METHODS: We used a LPS-challenged neonatal sepsis rodent model to investigate the effect of LQM01 on cognitive impairment and anxiety-like behavior in sepsis mice survivors, and examined the possible molecular mechanisms involved. RESULTS: It was found that LQM01 exposure during the neonatal period reduces anxiety-like behavior and cognitive impairment caused by lipopolysaccharides (LPS) in adult life. Additionally, treatment with LQM01 decreased pro-inflammatory cytokine levels and reduced NFκB, COX-2, MAPK and microglia activation in hippocampus of neonatal mice. Furthermore, LQM01 was also able to prevent oxidative damage in hippocampus of neonatal mice and preserve brain barrier integrity. CONCLUSIONS: LQM01 attenuated inflammatory reactions in an LPS-challenged neonatal sepsis mice model through the MAPK and NFκB signaling pathways and microglia activation suppression. All these findings are associated with mitigated cognitive impairment in 70 days-old LQM01 treated-mice. GENERAL SIGNIFICANCE: We revealed the effect of LQM01 as an anti-septic agent, and the role of crucial molecular pathways in mitigating the potential damage caused by neonatal sepsis.


Subject(s)
Cognitive Dysfunction/drug therapy , Guanidine/analogs & derivatives , Indoles/pharmacology , Inflammation/drug therapy , Neonatal Sepsis/drug therapy , Animals , Anti-Inflammatory Agents/pharmacology , Cognitive Dysfunction/metabolism , Disease Models, Animal , Female , Guanidine/pharmacology , Hippocampus/drug effects , Hippocampus/metabolism , Inflammation/metabolism , Lipopolysaccharides/pharmacology , Male , Mice, Inbred C57BL , Microglia/drug effects , Microglia/metabolism , Mitogen-Activated Protein Kinase Kinases/drug effects , NF-kappa B/drug effects , Neonatal Sepsis/chemically induced , Neonatal Sepsis/metabolism
13.
J Alzheimers Dis ; 72(4): 1045-1058, 2019.
Article in English | MEDLINE | ID: mdl-31256132

ABSTRACT

Translocator protein 18 kDa (TSPO) is located in the mitochondrial outer membrane and plays an important role in steroidogenesis and cell survival. In the central nervous system (CNS), its expression is upregulated in neuropathologies such as Alzheimer's disease (AD). Previously, we demonstrated that two new TSPO ligands based on an imidazoquinazolinone termed 2a and 2b, stimulated pregnenolone synthesis and ATP production in vitro. In the present study, we compared their effects to those of TSPO ligands described in the literature (XBD173, SSR-180,575, and Ro5-4864) by profiling the mitochondrial bioenergetic phenotype before and after treatment and investigating the protective effects of these ligands after oxidative injury in a cellular model of AD overexpressing amyloid-ß (Aß). Of note, ATP levels increased with rising pregnenolone levels suggesting that the energetic performance of mitochondria is linked to an increased production of this neurosteroid via TSPO modulation. Our results further demonstrate that the TSPO ligands 2a and 2b exerted neuroprotective effects by improving mitochondrial respiration, reducing reactive oxygen species and thereby decreasing oxidative stress-induced cell death as well as lowering Aß levels. The compounds 2a and 2b show similar or even better functional effects than those obtained with the reference TSPO ligands XBD173 and SSR-180.575. These findings indicate that the new TSPO ligands modulate mitochondrial bioenergetic phenotype and protect against oxidative injury probably through the de novo synthesis of neurosteroids, suggesting that these compounds could be potential new therapeutic tools for the treatment of neurodegenerative disease.


Subject(s)
Energy Metabolism/drug effects , Mitochondria/drug effects , Pregnenolone/biosynthesis , Quinazolinones/pharmacology , Receptors, GABA/metabolism , Cell Death/drug effects , Cell Line, Tumor , HEK293 Cells , Humans , Ligands , Mitochondria/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism
14.
Eur J Med Chem ; 177: 269-290, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31158744

ABSTRACT

Neuropathic pain is a chronic pain caused by a lesion or disease affecting the somatosensory nervous system. To date, no specific treatment has been developed to cure this pain. Antidepressants and anticonvulsant drugs are used, but they do not demonstrate universal efficacy, and they often cause detrimental adverse effects. Some studies highlighted the efficacy of sildenafil, a well-known inhibitor of phosphodiesterase 5 (PDE5, (IC50 = 3.3 nM)), in models of pain. Based on these results, we focused our attention on MY 5445, another known PDE5 inhibitor. Homologues, isosteres and structural analogues of MY 5445 were designed and all synthesized compounds were evaluated for their inhibitory activity toward PDE5. Selectivity profiles towards other PDE1-4 isoenzymes, water solubility and stability in acidic medium of the most potent PDE5 inhibitors were determined and the aminophthalazine 16h and its mimetic 41n (3-aminoindazole) were evaluated in comparison to MY 5445 (4b) in vivo in a model of neuropathic pain induced by sciatic nerve cuffing in mice (3 and 0.5 mg/kg, ip twice a day). Both compounds showed the same efficacy on neuropathic allodynia as MY 5445, and thus produced a significant relief of mechanical hypersensitivity after 12 days of treatment.


Subject(s)
Analgesics/therapeutic use , Hyperalgesia/drug therapy , Neuralgia/drug therapy , Phosphodiesterase 5 Inhibitors/therapeutic use , Phthalazines/therapeutic use , Analgesics/chemical synthesis , Analgesics/chemistry , Animals , Male , Mice, Inbred C57BL , Molecular Structure , Phosphodiesterase 5 Inhibitors/chemical synthesis , Phosphodiesterase 5 Inhibitors/chemistry , Phthalazines/chemical synthesis , Phthalazines/chemistry , Solubility , Structure-Activity Relationship
15.
Plant J ; 99(5): 924-936, 2019 09.
Article in English | MEDLINE | ID: mdl-31038800

ABSTRACT

Multiple adaptations were necessary when plants conquered the land. Among them were soluble phenylpropanoids related to plant protection and lignin necessary for upright growth and long-distance water transport. Cytochrome P450 monooxygenase 98 (CYP98) catalyzes a rate-limiting step in phenylpropanoid biosynthesis. Phylogenetic reconstructions suggest that a single copy of CYP98 founded each major land plant lineage (bryophytes, lycophytes, monilophytes, gymnosperms and angiosperms), and was maintained as a single copy in all lineages but the angiosperms. In angiosperms, a series of independent gene duplications and losses occurred. Biochemical assays in four angiosperm species tested showed that 4-coumaroyl-shikimate, a known intermediate in lignin biosynthesis, was the preferred substrate of one member in each species, while independent duplicates in Populus trichocarpa and Amborella trichopoda each showed broad substrate ranges, accepting numerous 4-coumaroyl-esters and -amines, and were thus capable of producing a wide range of hydroxycinnamoyl conjugates. The gymnosperm CYP98 from Pinus taeda showed a broad substrate range, but preferred 4-coumaroyl-shikimate as its best substrate. In contrast, CYP98s from the lycophyte Selaginella moellendorffii and the fern Pteris vittata converted 4-coumaroyl-shikimate poorly in vitro, but were able to use alternative substrates, in particular 4-coumaroyl-anthranilate. Thus, caffeoyl-shikimate appears unlikely to be an intermediate in monolignol biosynthesis in non-seed vascular plants, including ferns. The best substrate for CYP98A34 from the moss Physcomitrella patens was also 4-coumaroyl-anthranilate, while 4-coumaroyl-shikimate was converted to lower extents. Despite having in vitro activity with 4-coumaroyl-shikimate, CYP98A34 was unable to complement the Arabidopsis thaliana cyp98a3 loss-of-function phenotype, suggesting distinct properties also in vivo.


Subject(s)
Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Evolution, Molecular , Lignin/biosynthesis , Plant Proteins/genetics , Plant Proteins/metabolism , Arabidopsis/metabolism , Bryophyta/metabolism , Bryopsida/metabolism , Cytochrome P-450 Enzyme System/classification , Magnoliopsida/metabolism , Phylogeny , Plant Proteins/classification , Populus , Pteris/metabolism , Selaginellaceae/metabolism , Shikimic Acid
16.
Org Lett ; 21(3): 844-848, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30656941

ABSTRACT

An efficient and user-friendly palladium(II) precatalyst, POxAP (post-oxidative-addition precatalyst), was identified for use in Fukuyama cross-coupling reactions. Suitable for storage under air, the POxAP precatalyst allowed reaction between thioesters and organozinc reagents with turnover numbers of ∼90000. A series of 23 ketones were obtained with yields ranging from 53 to 99%. As proof of efficacy, an alternative approach was developed for the synthesis of a key precursor of the natural product isoprekinamycin.

17.
Chem Commun (Camb) ; 55(11): 1623-1626, 2019 Jan 31.
Article in English | MEDLINE | ID: mdl-30657138

ABSTRACT

A Pd cross-coupling approach for the synthesis of N-aryl-oxetanylamines has been developed. This method provides new building blocks potentially useful in medicinal chemistry as amide bioisosteres. The reactions are conducted in water employing the renewable feedstock surfactant TPGS-750-M.

18.
ACS Chem Neurosci ; 9(11): 2599-2609, 2018 11 21.
Article in English | MEDLINE | ID: mdl-29727163

ABSTRACT

Neuropeptide FF receptors (NPFF1R and NPFF2R) and their endogenous ligand neuropeptide FF have been shown previously to display antiopioid properties and to play a critical role in the adverse effects associated with chronic administrations of opiates including the development of opioid-induced hyperalgesia and analgesic tolerance. In this work, we sought to identify novel NPFF receptors ligands by focusing our interest in a series of heterocycles as rigidified nonpeptide NPFF receptor ligands, starting from already described aminoguanidine hydrazones (AGHs). Binding experiments and functional assays highlighted AGH 1n and its rigidified analogue 2-amino-dihydropyrimidine 22e for in vivo experiments. As shown earlier with the prototypical dipeptide antagonist RF9, both 1n and 22e reduced significantly the long lasting fentanyl-induced hyperalgesia in rodents. Altogether these data indicate that AGH rigidification maintains nanomolar affinities for both NPFF receptors, while improving antagonist character toward NPFF1R.


Subject(s)
Guanidines/pharmacology , Hydrazones/pharmacology , Hyperalgesia/drug therapy , Nociception/drug effects , Receptors, Neuropeptide/antagonists & inhibitors , Analgesics, Opioid/adverse effects , Animals , Drug Tolerance , Hyperalgesia/chemically induced , Male , Mice , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
19.
Nat Commun ; 9(1): 1042, 2018 03 12.
Article in English | MEDLINE | ID: mdl-29531216

ABSTRACT

Peripheral neuropathic pain (PNP) is a debilitating and intractable chronic disease, for which sensitization of somatosensory neurons present in dorsal root ganglia that project to the dorsal spinal cord is a key physiopathological process. Here, we show that hematopoietic cells present at the nerve injury site express the cytokine FL, the ligand of fms-like tyrosine kinase 3 receptor (FLT3). FLT3 activation by intra-sciatic nerve injection of FL is sufficient to produce pain hypersensitivity, activate PNP-associated gene expression and generate short-term and long-term sensitization of sensory neurons. Nerve injury-induced PNP symptoms and associated-molecular changes were strongly altered in Flt3-deficient mice or reversed after neuronal FLT3 downregulation in wild-type mice. A first-in-class FLT3 negative allosteric modulator, discovered by structure-based in silico screening, strongly reduced nerve injury-induced sensory hypersensitivity, but had no effect on nociception in non-injured animals. Collectively, our data suggest a new and specific therapeutic approach for PNP.


Subject(s)
Peripheral Nervous System Diseases/metabolism , fms-Like Tyrosine Kinase 3/metabolism , Animals , Blotting, Western , Cells, Cultured , Ganglia, Spinal/metabolism , Immunohistochemistry , In Situ Hybridization , Mice , Mice, Inbred C57BL , Neuralgia/genetics , Neuralgia/metabolism , Peripheral Nervous System Diseases/genetics , RNA, Small Interfering/genetics , Real-Time Polymerase Chain Reaction , Sensory Receptor Cells/metabolism , fms-Like Tyrosine Kinase 3/genetics
20.
ACS Chem Neurosci ; 9(6): 1357-1365, 2018 06 20.
Article in English | MEDLINE | ID: mdl-29566331

ABSTRACT

Acid-sensing ion channels (ASICs) are neuronal Na+-selective ion channels that open in response to extracellular acidification. They are involved in pain, fear, learning, and neurodegeneration after ischemic stroke. 2-Guanidine-4-methylquinazoline (GMQ) was recently discovered as the first nonproton activator of ASIC3. GMQ is of interest as a gating modifier and pore blocker of ASICs. It has however a low potency, and exerts opposite effects on ASIC1a and ASIC3. To further explore the molecular mechanisms of GMQ action, we have used the guanidinium moiety of GMQ as a scaffold and tested the effects of different GMQ derivatives on the ASIC pH dependence and maximal current. We report that GMQ derivatives containing quinazoline and quinoline induced, as GMQ, an alkaline shift of the pH dependence of activation in ASIC3 and an acidic shift in ASIC1a. Another group of 2-guanidinopyridines shifted the pH dependence of both ASIC1a and ASIC3 to more acidic values. Several compounds induced an alkaline shift of the pH dependence of ASIC1a/2a and ASIC2a/3 heteromers. Compared to GMQ, guanidinopyridines showed a 20-fold decrease in the IC50 for ASIC1a and ASIC3 current inhibition at pH 5. Strikingly, 2-guanidino-quinolines and -pyridines showed a concentration-dependent biphasic effect that resulted at higher concentrations in ASIC1a and ASIC3 inhibition (IC50 > 100 µM), while causing at lower concentration a potentiation of ASIC1a, but not ASIC3 currents (EC50 ≈ 10 µM). In conclusion, we describe a new family of small molecules as ASIC ligands and identify an ASIC subtype-specific potentiation by a subgroup of these compounds.


Subject(s)
Acid Sensing Ion Channels/drug effects , Cricetulus/metabolism , Guanidines/pharmacology , Ion Channel Gating/drug effects , Quinazolines/pharmacology , Acid Sensing Ion Channels/metabolism , Animals , CHO Cells , Cricetinae , Hydrogen-Ion Concentration/drug effects , Ligands , Neurons/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...