Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Bioanal Chem ; 413(16): 4301-4310, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33963881

ABSTRACT

Marine sponges from the Plakinidae family are well known for hosting cytotoxic secondary metabolites and the Brazilian Atlantic coast and its oceanic islands have been considered as a hotspot for the discovery of new Plakinidae species. Herein, we report the chemical profile among cytotoxic extracts obtained from four species of Plakinidae, collected in Fernando de Noronha Archipelago (PE, Northeastern Brazil). Crude organic extracts of Plakinastrella microspiculifera, Plakortis angulospiculatus, Plakortis insularis, and Plakortis petrupaulensis showed strong antiproliferative effects against two different cancer cell lines (HCT-116: 86.7-100%; MCF-7: 74.9-89.5%) at 50 µg/mL, by the MTT assay. However, at a lower concentration (5 µg/mL), high variability in inhibition of cell growth was observed (HCT-116: 17.3-68.7%; MCF-7: 0.00-55.5%), even within two samples of Plakortis insularis which were collected in the west and east sides of the Archipelago. To discriminate the chemical profile, the samples were investigated by UHPLC-HRMS under positive ionization mode. The produced data was uploaded to the Global Natural Products Social Molecular Networking and organized based on spectral similarities for purposes of comparison and annotation. Compounds such as dipeptides, nucleosides and derivatives, polyketides, and thiazine alkaloids were annotated and metabolomic differences were perceived among the species. To the best of our knowledge, this is the first assessment for cytotoxic activity and chemical profiling for Plakinastrella microspiculifera, Plakortis insularis and Plakortis petrupaulensis, revealing other biotechnologically relevant members of the Plakinidae family.


Subject(s)
Metabolome , Porifera/chemistry , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Biological Products/chemistry , Biological Products/pharmacology , Brazil , Cell Proliferation/drug effects , HCT116 Cells , Humans , Islands , MCF-7 Cells , Metabolomics , Neoplasms/drug therapy , Plakortis/chemistry , Plakortis/metabolism , Porifera/metabolism
2.
Article in English | MEDLINE | ID: mdl-33957353

ABSTRACT

Phorbas is a widely studied genus of marine sponge and produce structurally rich cytotoxic metabolites. Still, only few studies have assessed metabolites present in Brazilian species. To circumvent redundancy, in this work, we applied and herein report the use of a scouting liquid chromatographic system associate to the design of experiment produced by the DryLab® software to obtain a fast and efficient chromatographic separation of the active hexane fraction, further enabling untargeted high-resolution mass spectrometry (HRMS) data. To this end, a crude hydroalcoholic extract of the sponge Phorbas amaranthus collected in Brazilian coast was prepared and partitioned. The cytotoxicity of the crude extract and the fractions was evaluated using tumor cell culture models. Fragmentation pathways assembled from HRMS data allowed the annotation of 18 known Phorbas metabolites, while 17 metabolites were inferred based on Global Natural Product Social Molecular Networking (GNPS), matching with a further 29 metabolites annotated through molecular subnetwork. The workflow employed demonstrates that chromatographic method development can be accelerated by the use of automated scouting systems and DryLab®, which is useful for profiling natural product libraries, as well as data curation by molecular clusters and should be incorporated to the tools of natural product chemists.


Subject(s)
Chromatography, Liquid/methods , Porifera , Tissue Extracts , Animals , Cell Survival/drug effects , HCT116 Cells , Humans , Lysophospholipids/chemistry , Porifera/chemistry , Porifera/metabolism , Steroids/analysis , Steroids/chemistry , Terpenes/analysis , Terpenes/chemistry , Tissue Extracts/analysis , Tissue Extracts/metabolism , Tissue Extracts/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL