Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Chem ; 405(2): 105-118, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-37586381

ABSTRACT

Glucosinolates are plant thioglucosides, which act as chemical defenses. Upon tissue damage, their myrosinase-catalyzed hydrolysis yields aglucones that rearrange to toxic isothiocyanates. Specifier proteins such as thiocyanate-forming protein from Thlaspi arvense (TaTFP) are non-heme iron proteins, which capture the aglucone to form alternative products, e.g. nitriles or thiocyanates. To resolve the electronic state of the bound iron cofactor in TaTFP, we applied continuous wave electron paramagnetic resonance (CW EPR) spectroscopy at X-and Q-band frequencies (∼9.4 and ∼34 GHz). We found characteristic features of high spin and low spin states of a d 5 electronic configuration and local rhombic symmetry during catalysis. We monitored the oxidation states of bound iron during conversion of allylglucosinolate by myrosinase and TaTFP in presence and absence of supplemented Fe2+. Without added Fe2+, most high spin features of bound Fe3+ were preserved, while different g'-values of the low spin part indicated slight rearrangements in the coordination sphere and/or structural geometry. We also examined involvement of the redox pair Fe3+/Fe2 in samples with supplemented Fe2+. The absence of any EPR signal related to Fe3+ or Fe2+ using an iron-binding deficient TaTFP variant allowed us to conclude that recorded EPR signals originated from the bound iron cofactor.


Subject(s)
Thiocyanates , Thlaspi , Thiocyanates/chemistry , Thiocyanates/metabolism , Catalytic Domain , Electron Spin Resonance Spectroscopy , Thlaspi/metabolism , Iron/metabolism , Oxidation-Reduction
2.
Plant J ; 99(2): 329-343, 2019 07.
Article in English | MEDLINE | ID: mdl-30900313

ABSTRACT

Secondary metabolism is characterized by an impressive structural diversity. Here, we have addressed the mechanisms underlying structural diversification upon damage-induced activation of glucosinolates, a group of thioglucosides found in the Brassicales. The classical pathway of glucosinolate activation involves myrosinase-catalyzed hydrolysis and rearrangement of the aglucone to an isothiocyanate. Plants of the Brassicaceae possess specifier proteins, i.e. non-heme iron proteins that promote the formation of alternative products by interfering with this reaction through unknown mechanisms. We have used structural information available for the thiocyanate-forming protein from Thlaspi arvense (TaTFP), to test the impact of loops protruding at one side of its ß-propeller structure on product formation using the allylglucosinolate aglucone as substrate. In silico loop structure sampling and semiempirical quantum mechanical calculations identified a 3L2 loop conformation that enabled the Fe2+ cofactor to interact with the double bond of the allyl side chain. Only this arrangement enabled the formation of allylthiocyanate, a specific product of TaTFP. Simulation of 3,4-epithiobutane nitrile formation, the second known product of TaTFP, required an alternative substrate docking arrangement in which Fe2+ interacts with the aglucone thiolate. In agreement with these results, substitution of 3L2 amino acid residues involved in the conformational change as well as exchange of critical amino acid residues of neighboring loops affected the allylthiocyanate versus epithionitrile proportion obtained upon myrosinase-catalyzed allylglucosinolate hydrolysis in the presence of TaTFP in vitro. Based on these insights, we propose that specifier proteins are catalysts that might be classified as Fe2+ -dependent lyases.


Subject(s)
Glucosinolates/metabolism , Plant Proteins/chemistry , Thiocyanates/metabolism , Thlaspi/metabolism , Computer Simulation , Iron/metabolism , Models, Molecular , Molecular Docking Simulation , Nitriles/metabolism , Plant Proteins/metabolism , Protein Structure, Tertiary
3.
PLoS One ; 13(11): e0205755, 2018.
Article in English | MEDLINE | ID: mdl-30395611

ABSTRACT

Glucosinolates, a group of sulfur-rich thioglucosides found in plants of the order Brassicales, have attracted a lot of interest as chemical defenses of plants and health promoting substances in human diet. They are accumulated separately from their hydrolyzing enzymes, myrosinases, within the intact plant, but undergo myrosinase-catalyzed hydrolysis upon tissue disruption. This results in various biologically active products, e.g. isothiocyanates, simple nitriles, epithionitriles, and organic thiocyanates. While formation of isothiocyanates proceeds by a spontaneous rearrangement of the glucosinolate aglucone, aglucone conversion to the other products involves specifier proteins under physiological conditions. Specifier proteins appear to act with high specificity, but their exact roles and the structural bases of their specificity are presently unknown. Previous research identified the motif EXXXDXXXH as potential iron binding site required for activity, but crystal structures of recombinant specifier proteins lacked the iron cofactor. Here, we provide experimental evidence for the presence of iron (most likely Fe2+) in purified recombinant thiocyanate-forming protein from Thlaspi arvense (TaTFP) using a Ferene S-based photometric assay as well as Inductively Coupled Plasma-Mass Spectrometry. Iron binding and activity depend on E266, D270, and H274 suggesting a direct interaction of Fe2+ with these residues. Furthermore, we demonstrate presence of iron in epithiospecifier protein and nitrile-specifier protein 3 from Arabidopsis thaliana (AtESP and AtNSP3). We also present a homology model of AtNSP3. In agreement with this model, iron binding and activity of AtNSP3 depend on E386, D390, and H394. The homology model further suggests that the active site of AtNSP3 imposes fewer restrictions to the glucosinolate aglucone conformation than that of TaTFP and AtESP due to its larger size. This may explain why AtNSP3 does not support epithionitrile or thiocyanate formation, which likely requires exact positioning of the aglucone thiolate relative to the side chain.


Subject(s)
Glucosinolates/metabolism , Iron/metabolism , Plant Proteins/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/chemistry , Glucosinolates/chemistry , Molecular Docking Simulation , Mutation/genetics , Structural Homology, Protein , Thlaspi/metabolism , Triazines/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...