Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Appl Pharmacol ; 468: 116514, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37061008

ABSTRACT

BACKGROUND & AIMS: Vinyl chloride (VC) monomer is a volatile organic compound commonly used in industry. At high exposure levels, VC causes liver cancer and toxicant-associated steatohepatitis. However, lower exposure levels (i.e., sub-regulatory exposure limits) that do not directly damage the liver, enhance injury caused by Western diet (WD). It is still unknown if the long-term impact of transient low-concentration VC enhances the risk of liver cancer development. This is especially a concern given that fatty liver disease is in and of itself a risk factor for the development of liver cancer. METHODS: C57Bl/6 J mice were fed WD or control diet (CD) for 1 year. During the first 12 weeks of feeding only, mice were also exposed to VC via inhalation at sub-regulatory limit concentrations (<1 ppm) or air for 6 h/day, 5 days/week. RESULTS: Feeding WD for 1 year caused significant hepatic injury, which was exacerbated by VC. Additionally, VC increased the number of tumors which ranged from moderately to poorly differentiated hepatocellular carcinoma (HCC). Transcriptomic analysis demonstrated VC-induced changes in metabolic but also ribosomal processes. Epitranscriptomic analysis showed a VC-induced shift of the modification pattern that has been associated with metabolic disease, mitochondrial dysfunction, and cancer. CONCLUSIONS: These data indicate that VC sensitizes the liver to other stressors (e.g., WD), resulting in enhanced tumorigenesis. These data raise concerns about potential interactions between VC exposure and WD. It also emphasizes that current safety restrictions may be insufficient to account for other factors that can influence hepatotoxicity.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Vinyl Chloride , Mice , Animals , Vinyl Chloride/toxicity , Vinyl Chloride/metabolism , Transcriptome , Carcinoma, Hepatocellular/pathology , Diet, Western , Liver Neoplasms/chemically induced , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Carcinogenesis/metabolism , Cell Transformation, Neoplastic/metabolism
2.
Front Physiol ; 13: 969363, 2022.
Article in English | MEDLINE | ID: mdl-36160869

ABSTRACT

OATP1B1 and OATP1B3 are two drug transporters that mediate the uptake of multiple endo- and xenobiotics, including many drugs, into human hepatocytes. Numerous inhibitors have been identified, and for some of them, it is not clear whether they are also substrates. Historically radiolabeled substrates or LC-MS/MS methods were needed to test for transported substrates, both of which can be limiting in time and money. However, the competitive counterflow (CCF) assay originally described for OCT2 and, more recently, for OCT1, OATP2B1, and OATP1A2 does not require radiolabeled substrates or LC-MS/MS methods and, as a result, is a more cost-effective approach to identifying substrates of multidrug transporters. We used a CCF assay based on the stimulated efflux of the common model substrate estradiol-17ß-glucuronide (E17ßG) and tested 30 compounds for OATP1B1- and OATP1B3-mediated transport. Chinese Hamster Ovary (CHO) cells stably expressing OATP1B1 or OATP1B3 were preloaded with 10 nM [3H]-estradiol-17ß-glucuronide. After the addition of known substrates like unlabeled estradiol-17ß-glucuronide, estrone-3-sulfate, bromosulfophthalein, protoporphyrin X, rifampicin, and taurocholate to the outside of the preloaded CHO cells, we observed efflux of [3H]-estradiol-17ß-glucuronide due to exchange with the added compounds. Of the tested 30 compounds, some organic cation transporter substrates like diphenhydramine, metformin, and salbutamol did not induce [3H]-estradiol-17ß-glucuronide efflux, indicating that the two OATPs do not transport them. However, 22 (for OATP1B1) and 16 (for OATP1B3) of the tested compounds resulted in [3H]-estradiol-17ß-glucuronide efflux, suggesting that they are OATP substrates. Among these compounds, we further tested clarithromycin, indomethacin, reserpine, and verapamil and confirmed that they are substrates of the two OATPs. These results demonstrate that the substrate spectrum of the well-characterized organic anion transporting polypeptides includes several organic cations. Furthermore, as for other drug uptake transporters, the CCF assay is an easy-to-use screening tool to identify novel OATP substrates.

3.
Acta Pharm Sin B ; 11(12): 3756-3767, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35024304

ABSTRACT

Occupational and environmental exposures to industrial chemicals are well known to cause hepatotoxicity and liver injury. However, despite extensive evidence showing that exposure can lead to disease, current research approaches and regulatory policies fail to address the possibility that subtle changes caused by low level exposure to chemicals may also enhance preexisting conditions. In recent years, the conceptual understanding of the contribution of environmental chemicals to liver disease has progressed significantly. Mitochondria are often target of toxicity of environmental toxicants resulting in multisystem disorders involving different cells, tissues, and organs. Here, we review persistent maladaptive changes to mitochondria in response to environmental toxicant exposure as a mechanism of hepatotoxicity. With better understanding of the mechanism(s) and risk factors that mediate the initiation and progression of toxicant-induced liver disease, rational targeted therapy can be developed to better predict risk, as well as to treat or prevent this disease.

4.
J Vis Exp ; (155)2020 01 12.
Article in English | MEDLINE | ID: mdl-31984951

ABSTRACT

Vinyl chloride (VC), an abundant environmental contaminant, causes steatohepatitis at high levels, but is considered safe at lower levels. Although several studies have investigated the role of VC as a direct hepatotoxicant, the concept that VC modifies sensitivity of the liver to other factors, such as nonalcoholic fatty liver disease (NAFLD) caused by high-fat diet (HFD) is novel. This protocol describes an exposure paradigm to evaluate the effects of chronic, low-level exposure to VC. Mice are acclimated to low-fat or high-fat diet one week prior to the beginning of the inhalation exposure and remain on these diets throughout the experiment. Mice are exposed to VC (sub-OSHA level: <1 ppm) or room air in inhalation chambers for 6 hours/day, 5 days/week, for up to 12 weeks. Animals are monitored weekly for body weight gain and food consumption. This model of VC exposure causes no overt liver injury with VC inhalation alone. However, the combination of VC and HFD significantly enhances liver disease. A technical advantage of this co-exposure model is the whole-body exposure, without restraint. Moreover, the conditions more closely resemble a very common human situation of a combined exposure to VC with underlying nonalcoholic fatty liver disease and therefore support the novel hypothesis that VC is an environmental risk factor for the development of liver damage as a complication of obesity (i.e., NAFLD). This work challenges the paradigm that the current exposure limits of VC (occupational and environmental) are safe. The use of this model can shed new light and concern on the risks of VC exposure. This model of toxicant-induced liver injury can be used for other volatile organic compounds and to study other interactions that may impact the liver and other organ systems.


Subject(s)
Diet, High-Fat/adverse effects , Environmental Exposure , Models, Biological , Obesity/etiology , Vinyl Chloride/toxicity , Administration, Inhalation , Animals , Humans , Liver/drug effects , Liver/injuries , Liver/pathology , Liver Diseases/etiology , Mice, Inbred C57BL
5.
Toxicol Appl Pharmacol ; 382: 114745, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31499194

ABSTRACT

Vinyl chloride (VC) is a prevalent environmental toxicant that is rapidly metabolized within the liver. Its metabolites have been shown to directly cause hepatic injury at high exposure levels. We have previously reported that VC metabolite, chloroethanol (CE), potentiates liver injury caused by lipopolysaccharide (LPS). Importantly, that study showed that CE alone, while not causing damage per se, was sufficient to alter hepatic metabolism and increase mTOR phosphorylation in mice, suggesting a possible role for the mTOR pathway. Here, we explored the effect of an mTOR inhibitor, rapamycin, in this model. C57BL/6 J mice were administered CE, followed by rapamycin 1 h and LPS 24 h later. As observed previously, the combination of CE and LPS significantly enhanced liver injury, inflammation, oxidative stress, and metabolic dysregulation. Rapamycin attenuated not only inflammation, but also restored the metabolic phenotype and protected against CE + LPS-induced oxidative stress. Importantly, rapamycin protected against mitochondrial damage and subsequent production of reactive oxygen species (ROS). The protective effect on mitochondrial function by rapamycin was mediated, by restoring the integrity of the electron transport chain at least in part, by blunting the deactivation of mitochondrial c-src, which is involved mitochondrial ROS production by electron transport chain leakage. Taken together, these results further demonstrate a significant role of mTOR-mediated pathways in VC-metabolite induced liver injury and provide further insight into VC-associated hepatic damage. As mTOR mediated pathways are very complex and rapamycin is a more global inhibitor, more specific mTOR (i.e. mTORC1) inhibitors should be considered in future studies.


Subject(s)
Chemical and Drug Induced Liver Injury/prevention & control , Chlorides/toxicity , Ethanol/toxicity , Lipopolysaccharides/toxicity , Sirolimus/therapeutic use , Vinyl Chloride/toxicity , Animals , Chemical and Drug Induced Liver Injury/metabolism , Male , Mice , Mice, Inbred C57BL , Oxidative Stress/drug effects , Oxidative Stress/physiology , Sirolimus/pharmacology , Vinyl Chloride/metabolism
6.
Curr Environ Health Rep ; 6(3): 80-94, 2019 09.
Article in English | MEDLINE | ID: mdl-31134516

ABSTRACT

PURPOSE: Fatty liver disease (FLD) affects over 25% of the global population and may lead to liver-related mortality due to cirrhosis and liver cancer. FLD caused by occupational and environmental chemical exposures is termed "toxicant-associated steatohepatitis" (TASH). The current review addresses the scientific progress made in the mechanistic understanding of TASH since its initial description in 2010. RECENT FINDINGS: Recently discovered modes of actions for volatile organic compounds and persistent organic pollutants include the following: (i) the endocrine-, metabolism-, and signaling-disrupting chemical hypotheses; (ii) chemical-nutrient interactions and the "two-hit" hypothesis. These key hypotheses were then reviewed in the context of the steatosis adverse outcome pathway (AOP) proposed by the US Environmental Protection Agency. The conceptual understanding of the contribution of environmental exposures to FLD has progressed significantly. However, because this is a new research area, more studies including mechanistic human data are required to address current knowledge gaps.


Subject(s)
Carcinogens/toxicity , Endocrine Disruptors/adverse effects , Environmental Exposure/adverse effects , Environmental Pollutants/toxicity , Non-alcoholic Fatty Liver Disease/chemically induced , Humans , Non-alcoholic Fatty Liver Disease/epidemiology , Pesticides/toxicity , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL