Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Biochem Pharmacol ; 224: 116245, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38685281

ABSTRACT

Cardiovascular disease (CVD) is the leading cause of death in rheumatoid arthritis (RA). Resistin is an adipokine that induces adipose tissue inflammation and activation of monocytes/macrophages via adenylate cyclase-associated protein-1 (CAP1). Resistin levels are increased in RA and might cause perivascular adipose tissue (PVAT) dysfunction, leading to vascular damage and CVD. This study aimed to investigate the role of resistin in promoting PVAT dysfunction by increasing local macrophage and inflammatory cytokines content in antigen-induced arthritis (AIA). Resistin pharmacological effects were assessed by using C57Bl/6J wild-type (WT) mice, humanized resistin mice expressing human resistin in monocytes-macrophages (hRTN+/-/-), and resistin knockout mice (RTN-/-) with AIA and respective controls. We investigated AIA disease activity and functional, cellular, and molecular parameters of the PVAT. Resistin did not contribute to AIA disease activity and its concentrations were augmented in the PVAT and plasma of WT AIA and hRTN+/-/- AIA animals. In vitro exposure of murine arteries to resistin impaired vascular function by decreasing the anti-contractile effect of PVAT. WT AIA mice and hRTN+/-/- AIA mice exhibited PVAT dysfunction and knockdown of resistin prevented it. Macrophage-derived cytokines, markers of types 1 and 2 macrophages, and CAP1 expression were increased in the PVAT of resistin humanized mice with AIA, but not in knockout mice for resistin. This study reveals that macrophage-derived resistin promotes PVAT inflammation and dysfunction regardless of AIA disease activity. Resistin might represent a translational target to reduce RA-driven vascular dysfunction and CVD.


Subject(s)
Adipose Tissue , Arthritis, Experimental , Macrophages , Mice, Inbred C57BL , Resistin , Animals , Resistin/metabolism , Resistin/genetics , Humans , Adipose Tissue/metabolism , Mice , Macrophages/metabolism , Arthritis, Experimental/metabolism , Mice, Knockout , Male
2.
Oral Dis ; 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38178616

ABSTRACT

OBJECTIVE: This study investigated the concentrations of neutrophil extracellular traps (NET) and salivary cytokines (IL-1ß, IL-6, IL-8/CXCL8, TNF, and TGF-ß1) in patients undergoing chemotherapy and their associations with oral mucositis (OM) and Candida infection. MATERIALS AND METHODS: This prospective longitudinal study performed at a Brazilian service included 60 adults diagnosed with hematolymphoid diseases. Saliva samples were collected on days D0, D3, D10, and D15. Cytokines were analyzed by ELISA and NET formation by identification of the myeloperoxidase-DNA complex. Oral Candida spp. was cultured. RESULTS: OM occurred in 43.3% of patients and oral candidiasis in 20%. However, 66% of individuals had positive cultures for C. albicans. Higher concentrations of IL-6, IL-8/CXCL8, and TNF and lower concentrations of TGF-ß1 were observed in patients with OM. C. albicans infection contributed to the increase in IL-8/CXCL8, TGF-ß1, and TNF. Individuals with OM or with oral candidiasis had significant reductions in NET formation. In contrast, individuals with C. albicans and with concomitant C. albicans and OM exhibited higher NET formation. CONCLUSION: The kinetics of cytokine levels and NET formation in chemotherapy-induced OM appears to be altered by Candida infection, even in the absence of clinical signs of oral candidiasis.

3.
Br J Pharmacol ; 181(3): 429-446, 2024 02.
Article in English | MEDLINE | ID: mdl-37625900

ABSTRACT

BACKGROUND AND PURPOSE: Rheumatoid arthritis (RA) is a chronic autoimmune disease that can cause bone erosion due to increased osteoclastogenesis. Neutrophils involvement in osteoclastogenesis remains uncertain. Given that neutrophil extracellular traps (NETs) can act as inflammatory mediators in rheumatoid arthritis, we investigated the role of NETs in stimulating bone loss by potentiating osteoclastogenesis during arthritis. EXPERIMENTAL APPROACH: The level of NETs in synovial fluid from arthritis patients was assessed. Bone loss was evaluated by histology and micro-CT in antigen-induced arthritis (AIA)-induced WT mice treated with DNase or in Padi4-deficient mice (Padi4flox/flox LysMCRE ). The size and function of osteoclasts and the levels of RANKL and osteoprotegerin (OPG) released by osteoblasts that were incubated with NETs were measured. The expression of osteoclastogenic marker genes and protein levels were evaluated by qPCR and western blotting. To assess the participation of TLR4 and TLR9 in osteoclastogenesis, cells from Tlr4-/- and Tlr9-/- mice were cultured with NETs. KEY RESULTS: Rheumatoid arthritis patients had higher levels of NETs in synovial fluid than osteoarthritis patients, which correlated with increased levels of RANKL/OPG. Moreover, patients with bone erosion had higher levels of NETs. Inhibiting NETs with DNase or Padi4 deletion alleviated bone loss in arthritic mice. Consistently, NETs enhanced RANKL-induced osteoclastogenesis that was dependent on TLR4 and TLR9 and increased osteoclast resorptive functions in vitro. In addition, NETs stimulated the release of RANKL and inhibited osteoprotegerin in osteoblasts, favouring osteoclastogenesis. CONCLUSIONS AND IMPLICATIONS: Inhibiting NETs could be an alternative strategy to reduce bone erosion in arthritis patients.


Subject(s)
Arthritis, Rheumatoid , Extracellular Traps , Humans , Animals , Mice , Osteoprotegerin/metabolism , Osteoprotegerin/pharmacology , Osteogenesis , Extracellular Traps/metabolism , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 9/metabolism , Arthritis, Rheumatoid/metabolism , Osteoclasts/metabolism , Deoxyribonucleases/metabolism , RANK Ligand/metabolism
4.
Odontology ; 112(1): 208-220, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37058199

ABSTRACT

PURPOSE: Periodontitis and coronavirus disease (COVID-19) share risk factors and activate similar immunopathological pathways, intensifying systemic inflammation. This study investigated the clinical, immunological and microbiological parameters in individuals with COVID-19 and controls, exploring whether periodontitis-driven inflammation contributes to worsening COVID-19 endpoints. METHODS: Case (positive RT-PCR for SARS-CoV-2) and control (negative RT-PCR) individuals underwent clinical and periodontal assessments. Salivary levels of TNF-α, IL-6, IL-1ß, IL-10, OPG, RANKL, neutrophil extracellular traps, and subgingival biofilm were analyzed at two timepoints. Data on COVID-19-related outcomes and comorbidity information were evaluated from medical records. RESULTS: Ninety-nine cases of COVID-19 and 182 controls were included for analysis. Periodontitis was associated with more hospitalization (p = 0.009), more days in the intensive care unit (ICU) (p = 0.042), admission to the semi-ICU (p = 0.047), and greater need for oxygen therapy (p = 0.042). After adjustment for confounders, periodontitis resulted in a 1.13-fold increase in the chance of hospitalization. Salivary IL-6 levels (p = 0.010) were increased in individuals with COVID-19 and periodontitis. Periodontitis was associated with increased RANKL and IL-1ß after COVID-19. No significant changes were observed in the bacterial loads of the periodontopathogens Porphyromona gingivalis, Aggregatibacter actinomycetemcomitans, Tanerella forsythia, and Treponema denticola. CONCLUSIONS: Periodontitis was associated with worse COVID-19 outcomes, suggesting the relevance of periodontal care to reduce the burden of overall inflammation. Understanding the crosstalk between SARS-CoV-2 infection and chronic conditions such as periodontitis that can influence disease outcome is important to potentially prevent complications of COVID-19.


Subject(s)
COVID-19 , Chronic Periodontitis , Periodontitis , Humans , Porphyromonas gingivalis , Interleukin-6 , Case-Control Studies , SARS-CoV-2 , Periodontitis/epidemiology , Periodontitis/microbiology , Inflammation , Treponema denticola , Chronic Periodontitis/microbiology
5.
J Clin Periodontol ; 51(4): 452-463, 2024 04.
Article in English | MEDLINE | ID: mdl-38115803

ABSTRACT

AIM: We sought to investigate the release of neutrophil extracellular traps (NETs) in neutrophils from individuals with rheumatoid arthritis (RA) and controls and compare the presence of NETs in gingival tissues according to periodontal status. Also, the association between single nucleotide polymorphisms (SNPs) of the peptidyl arginine deaminase type 4 (PADI4) gene and the GTG haplotype with RA, periodontitis and NETs was evaluated in vitro. MATERIALS AND METHODS: Peripheral neutrophils were isolated by density gradient, and NET concentration was determined by the PicoGreen method. Immunofluorescence was studied to identify NETs by co-localization of myeloperoxidase (MPO)-citrullinated histone H3 (H3Cit). Genotyping for SNPs (PADI4_89; PADI4_90; PADI4_92; and PADI4_104) was performed in 87 individuals with RA and 111 controls. RESULTS: The release of NETs in vitro was significantly higher in individuals with RA and periodontitis and when stimulated with Porphyromonas gingivalis. Gingival tissues from subjects with RA and periodontitis revealed increased numbers of MPO-H3Cit-positive cells. Individuals with the GTG haplotype showed a higher release of NETs in vitro and worse periodontal parameters. CONCLUSIONS: The release of NETs by circulating neutrophils is associated with RA and periodontitis and is influenced by the presence of the GTG haplotype.


Subject(s)
Arthritis, Rheumatoid , Extracellular Traps , Periodontitis , Humans , Protein-Arginine Deiminases/genetics , Arthritis, Rheumatoid/genetics , Periodontitis/genetics , Neutrophils , Polymorphism, Single Nucleotide
6.
J Infect Dis ; 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38015657

ABSTRACT

BACKGROUND: The inflammation in the lungs and other vital organs in COVID-19 are characterized by the presence of neutrophils and high concentration of neutrophil extracellular traps (NETs), which also seems to mediate host tissue damage. However, it is not known whether NETs could have virucidal activity against SARS-CoV-2. METHODS: We investigated whether NETs could prevent SARS-CoV-2 replication in neutrophils and epithelial cells, and what the consequence of NETs degradation in K18-humanized ACE2 transgenic mice infected with SARS-CoV-2. RESULTS: Here, by immunofluorescence microscopy we observed that viral particles co-localize with NETs in neutrophils isolated from COVID-19 patients or from healthy individuals and infected in vitro. The inhibition of NETs production increased virus replication in neutrophils. In parallel, we observed that NETs inhibited virus abilities to infect and replicate in epithelial cells after 24 h of infection. Degradation of NETs with DNase I prevented their virucidal effect in vitro. Using K18-humanized ACE2 transgenic mice we observed a higher viral load in animals treated with DNase I. On the other hand, the virucidal effect of NETs was not dependent on neutrophil elastase or myeloperoxidase activity. CONCLUSION: Our results provide evidence of the role of NETosis as a mechanism of SARS-CoV-2 viral capture and inhibition.

7.
Clin Immunol ; 257: 109836, 2023 12.
Article in English | MEDLINE | ID: mdl-37951516

ABSTRACT

BACKGROUND: COVID-19 causes consequences such as imbalance of the immune system and thrombotic events. During the infection process, NETs in excess induce a pro-inflammatory response and disseminated intravascular coagulation. We evaluated the role of enoxaparin as a potential inhibitor of NETs. METHODS: K18-hACE2 animals infected with the SARS-CoV-2 virus and a group of 23 individuals admitted to the hospital with COVID-19 treated with enoxaparin or without treatment and controls without the disease were included. RESULTS: Enoxaparin decreased the levels of NETs, reduced the signs of the disease and mitigated lung damage in the animals infected with SARS-CoV-2. These effects were partially associated with prevention of SARS-CoV-2 entry and NETs synthesis. Clinical data revealed that treatment with enoxaparin decreased the levels of inflammatory markers, the levels of NETs in isolated neutrophils and the organ dysfunction. CONCLUSION: This study provides evidence for the beneficial effects of enoxaparin in COVID-19 in addition to its anticoagulant role.


Subject(s)
COVID-19 , Extracellular Traps , Humans , Animals , Neutrophils , Enoxaparin/pharmacology , SARS-CoV-2
8.
J Endod ; 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37619708

ABSTRACT

INTRODUCTION: Neutrophil extracellular traps (NETs) have been described as structures composed of DNA and proteins, such as elastase and myeloperoxidase, that are able to kill bacteria extracellularly. The aim of the present study was to evaluate the role of NETs in bone resorption observed in pulp infection-induced apical periodontitis in mice. METHODS: Apical periodontitis was experimentally induced by exposing the dental pulp of the mandibular first molar of mice to the oral microenvironment. The expression of NETs was evaluated by immunofluorescence in mice and biopsies of apical periodontitis. Mice were treated with vehicle or DNase I to degrade NETs, and the samples were collected after 7 days. The size of the apical lesion and the osteoclast number were determined in hematoxylin-eosin- and tartrate-resistant acid phosphatase-stained sections, respectively. Osteoclast differentiation and function markers were evaluated by quantitative polymerase chain reaction. The level of NETs in the serum was determined by the myeloperoxidase-DNA PicoGreen assay. RESULTS: We first confirmed the presence of neutrophils and NETs at the site of the lesion in mice and in biopsies of patients with apical periodontitis. The treatment of mice with DNase I reduced the level of NETs in the serum and led to a reduction in apical lesion size and alveolar bone resorption. This effect was associated with a reduction of local inflammatory infiltrate and a reduced number of osteoclasts. We found that the increased expression of Acp5, Ctsk, and Rankl genes associated with osteoclast formation and function were abrogated by the absence of NETs. CONCLUSIONS: Our data highlight NETs as an important player in the pathogenesis of apical periodontitis with regard to the local inflammation and consequent bone resorption after pulp infection.

9.
J Clin Invest ; 133(12)2023 06 15.
Article in English | MEDLINE | ID: mdl-37104043

ABSTRACT

Patients with severe COVID-19 develop acute respiratory distress syndrome (ARDS) that may progress to cytokine storm syndrome, organ dysfunction, and death. Considering that complement component 5a (C5a), through its cellular receptor C5aR1, has potent proinflammatory actions and plays immunopathological roles in inflammatory diseases, we investigated whether the C5a/C5aR1 pathway could be involved in COVID-19 pathophysiology. C5a/C5aR1 signaling increased locally in the lung, especially in neutrophils of critically ill patients with COVID-19 compared with patients with influenza infection, as well as in the lung tissue of K18-hACE2 Tg mice (Tg mice) infected with SARS-CoV-2. Genetic and pharmacological inhibition of C5aR1 signaling ameliorated lung immunopathology in Tg-infected mice. Mechanistically, we found that C5aR1 signaling drives neutrophil extracellular traps-dependent (NETs-dependent) immunopathology. These data confirm the immunopathological role of C5a/C5aR1 signaling in COVID-19 and indicate that antagonists of C5aR1 could be useful for COVID-19 treatment.


Subject(s)
COVID-19 , Extracellular Traps , Humans , Animals , Mice , COVID-19/genetics , COVID-19/pathology , Extracellular Traps/metabolism , COVID-19 Drug Treatment , SARS-CoV-2/metabolism , Lung/pathology , Complement C5a/genetics , Complement C5a/metabolism
10.
Respir Res ; 24(1): 66, 2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36864506

ABSTRACT

BACKGROUND: COVID-19 is characterized by severe acute lung injury, which is associated with neutrophil infiltration and the release of neutrophil extracellular traps (NETs). COVID-19 treatment options are scarce. Previous work has shown an increase in NETs release in the lung and plasma of COVID-19 patients suggesting that drugs that prevent NETs formation or release could be potential therapeutic approaches for COVID-19 treatment. METHODS: Here, we report the efficacy of NET-degrading DNase I treatment in a murine model of COVID-19. SARS-CoV-2-infected K18-hACE2 mice were performed for clinical sickness scores and lung pathology. Moreover, the levels of NETs were assessed and lung injuries were by histopathology and TUNEL assay. Finally, the injury in the heart and kidney was assessed by histopathology and biochemical-specific markers. RESULTS: DNase I decreased detectable levels of NETs, improved clinical disease, and reduced lung, heart, and kidney injuries in SARS-CoV-2-infected K18-hACE2 mice. Furthermore, our findings indicate a potentially deleterious role for NETs lung tissue in vivo and lung epithelial (A549) cells in vitro, which might explain part of the pathophysiology of severe COVID-19. This deleterious effect was diminished by the treatment with DNase I. CONCLUSIONS: Together, our results support the role of NETs in COVID-19 immunopathology and highlight NETs disruption pharmacological approaches as a potential strategy to ameliorate COVID-19 clinical outcomes.


Subject(s)
Acute Lung Injury , COVID-19 , Extracellular Traps , Animals , Humans , Mice , SARS-CoV-2 , COVID-19 Drug Treatment , Disease Models, Animal , Neutrophils , Deoxyribonuclease I/pharmacology , Deoxyribonuclease I/therapeutic use
11.
JCI Insight ; 8(8)2023 04 24.
Article in English | MEDLINE | ID: mdl-36917195

ABSTRACT

Sepsis is a lethal syndrome characterized by systemic inflammation and abnormal coagulation. Despite therapeutic advances, sepsis mortality remains substantially high. Herein, we investigated the role of the plasminogen/plasmin (Plg/Pla) system during sepsis. Plasma levels of Plg were significantly lower in mice subjected to severe compared with nonsevere sepsis, whereas systemic levels of IL-6, a marker of sepsis severity, were higher in severe sepsis. Plg levels correlated negatively with IL-6 in both septic mice and patients, whereas plasminogen activator inhibitor-1 levels correlated positively with IL-6. Plg deficiency render mice susceptible to nonsevere sepsis induced by cecal ligation and puncture (CLP), resulting in greater numbers of neutrophils and M1 macrophages, liver fibrin(ogen) deposition, lower efferocytosis, and increased IL-6 and neutrophil extracellular trap (NET) release associated with organ damage. Conversely, inflammatory features, fibrin(ogen), and organ damage were substantially reduced, and efferocytosis was increased by exogenous Pla given during CLP- and LPS-induced endotoxemia. Plg or Pla protected mice from sepsis-induced lethality and enhanced the protective effect of antibiotics. Mechanistically, Plg/Pla-afforded protection was associated with regulation of NET release, requiring Pla-protease activity and lysine binding sites. Plg/Pla are important host-protective players during sepsis, controlling local and systemic inflammation and collateral organ damage.


Subject(s)
Extracellular Traps , Sepsis , Mice , Animals , Fibrinolysin , Plasminogen , Extracellular Traps/metabolism , Interleukin-6/metabolism , Inflammation/metabolism , Sepsis/metabolism , Fibrin/metabolism
12.
Inflamm Res ; 72(2): 203-215, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36401631

ABSTRACT

OBJECTIVE: This study aimed to investigate the effects of FK506 on experimental sepsis immunopathology. It investigated the effect of FK506 on leukocyte recruitment to the site of infection, systemic cytokine production, and organ injury in mice with sepsis. METHODS: Using a murine cecal ligation and puncture (CLP) peritonitis model, the experiments were performed with wild-type (WT) mice and mice deficient in the gene Nfat1 (Nfat1-/-) in the C57BL/6 background. Animals were treated with 2.0 mg/kg of FK506, subcutaneously, 1 h before the sepsis model, twice a day (12 h/12 h). The number of bacteria colony forming units (CFU) was manually counted. The number of neutrophils in the lungs was estimated by the myeloperoxidase (MPO) assay. The expression of CXCR2 in neutrophils was determined using flow cytometry analysis. The expression of inflammatory cytokines in macrophage was determined using ELISA. The direct effect of FK506 on CXCR2 internalization was evaluated using HEK-293T cells after CXCL2 stimulation by the BRET method. RESULTS: FK506 treatment potentiated the failure of neutrophil migration into the peritoneal cavity, resulting in bacteremia and an exacerbated systemic inflammatory response, which led to higher organ damage and mortality rates. Failed neutrophil migration was associated with elevated CXCL2 chemokine plasma levels and lower expression of the CXCR2 receptor on circulating neutrophils compared with non-treated CLP-induced septic mice. FK506 did not directly affect CXCL2-induced CXCR2 internalization by transfected HEK-293 cells or mice neutrophils, despite increasing CXCL2 release by LPS-treated macrophages. Finally, the CLP-induced response of Nfat1-/- mice was similar to those observed in the Nfat1+/+ genotype, suggesting that the FK506 effect is not dependent on the NFAT1 pathway. CONCLUSION: Our data indicate that the increased susceptibility to infection of FK506-treated mice is associated with failed neutrophil migration due to the reduced membrane availability of CXCR2 receptors in response to exacerbated levels of circulating CXCL2.


Subject(s)
Neutrophils , Sepsis , Humans , Mice , Animals , Tacrolimus/pharmacology , Tacrolimus/therapeutic use , HEK293 Cells , Mice, Inbred C57BL , Sepsis/metabolism , Neutrophil Infiltration
13.
Clin Exp Rheumatol ; 41(7): 1473-1479, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36441653

ABSTRACT

OBJECTIVES: To quantify survivin and NETs in synovial fluid (SF) of patients with rheumatoid arthritis (RA) and osteoarthritis (OA), and to assess whether there is a correlation of the quantifications with the exclusion of OA diagnosis and the activity of RA. METHODS: We performed a cross-sectional, observational study, in which 32 patients with RA and 16 with OA were included. Clinical and laboratory data were obtained, in addition to routine analysis of SF and the measurement of SF survivin and NETs. RA activity was assessed by DAS28. RESULTS: Concentrations of survivin (median, 356.9 vs. 49.9 pg/mL; p=0.0006) and NETs (median, 100.7 vs. 49.7 ng/mL; p=0.004) were elevated in the SF of the RA group compared to those of the OA group. ROC curves showed the following values for measurements of survivin and NETs: AUC of 79% and 75% respectively, with sensitivity of 75% and specificity of 78% for both. There was no correlation between survivin and NETs values for both groups, but we found association between SF survivin and serum ACPA for RA patients. CONCLUSIONS: We found an independent association between levels of survivin and NETs in SF with the exclusion of OA diagnosis, but not with RA activity. There was no correlation between survivin and NETs in SF, because we suppose that resistance to apoptosis, mediated by survivin, and NETosis are independently related to the pathophysiology of RA.


Subject(s)
Arthritis, Rheumatoid , Osteoarthritis , Synovial Fluid , Humans , Biomarkers , Cross-Sectional Studies , Survivin
14.
Microorganisms ; 12(1)2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38257895

ABSTRACT

This study evaluated the changes in the composition of oral-gut microbiota in patients with rheumatoid arthritis (RA) caused by methotrexate (MTX) and non-surgical periodontal treatment (NSPT). Assessments were performed at baseline (T0), 6 months after MTX treatment (T1), and 45 days after NSPT (T2). The composition of the oral and gut microbiota was assessed by amplifying the V4 region of the 16S gene from subgingival plaques and stools. The results of the analysis of continuous variables were presented descriptively and non-parametric tests and Spearman's correlation were adopted. A total of 37 patients (27 with periodontitis) were evaluated at T0; 32 patients (24 with periodontitis) at T1; and 28 patients (17 with periodontitis) at T2. MTX tended to reduce the alpha diversity of the oral-gut microbiota, while NSPT appeared to increase the number of different species of oral microbiota. MTX and NSPT influenced beta diversity in the oral microbiota. The relative abundance of oral microbiota was directly influenced by periodontal status. MTX did not affect the periodontal condition but modified the correlations that varied from weak to moderate (p < 0.05) between clinical parameters and the microbiota. MTX and NSPT directly affected the composition and richness of the oral-gut microbiota. However, MTX did not influence periodontal parameters.

15.
Transl Psychiatry ; 12(1): 526, 2022 12 26.
Article in English | MEDLINE | ID: mdl-36572669

ABSTRACT

Higher levels of interleukin (IL)-6 and elevated neutrophil counts are consistently reported in the blood of patients with schizophrenia. Stressors during childhood and/or adolescence are major socioenvironmental risk factors for schizophrenia and may contribute to immune dysregulation. Previous studies using blood cytokines to stratify patients with schizophrenia suggest that only a subset presents a low-grade inflammatory state. However, these studies have not addressed whether environmental factors such as childhood maltreatment contributed to identifying inflammatory clusters. Moreover, a neutrophil-related mechanism (Neutrophil Extracellular Traps; NETs) central to both the initiation and chronicity of autoimmune and inflammatory diseases has never been investigated in psychiatry. Elevated NETs in schizophrenia may predispose patients to inflammatory and autoimmune diseases resulting in reduced life expectancy. We, therefore, investigated NETs as a novel mechanism and biological target in early schizophrenia and their role together with IL-6 and childhood maltreatment in identifying cluster subgroups. We found increased NETs in the plasma of patients with early schizophrenia (n = 78) compared to both their unaffected siblings (n = 25) and community controls (n = 78), irrespective of sex, body mass index, psychoactive drug use, or tobacco smoking. Increased NETs in patients were unrelated to antipsychotic treatment, which was further tested in vitro using fresh neutrophils. By applying unsupervised two-step clustering analysis, we integrated values of NETs, IL-6, and childhood maltreatment scores. We identified two main clusters; childhood maltreatment scores and NETs were the most important variables contributing to cluster separation (high-CL1 and low-CL2), while IL-6 was the least contributor. Patients allocated in the high-CL1 (61.5%) had significantly higher childhood maltreatment scores, NETs, and IL-6 levels than the remaining groups (patients low-CL2, siblings, and controls high-CL1 and low-CL2). We complemented these findings with a rat model based on stress exposure during adolescence that results in several schizophrenia-like changes in adulthood. We found that adolescent stressed rats had higher NETs and IL-6 levels in serum compared to non-stressed rats with a tendency to produce more NETs from the bone marrow. Altogether, this study brings a novel cellular-based mechanism in schizophrenia that, combined with early-stress, could be useful to identify subgroups for more personalised treatments.


Subject(s)
Extracellular Traps , Schizophrenia , Stress, Psychological , Animals , Rats , Interleukin-6 , Neutrophils
16.
Crit Care ; 26(1): 206, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35799268

ABSTRACT

BACKGROUND: The release of neutrophil extracellular traps (NETs) is associated with inflammation, coagulopathy, and organ damage found in severe cases of COVID-19. However, the molecular mechanisms underlying the release of NETs in COVID-19 remain unclear. OBJECTIVES: We aim to investigate the role of the Gasdermin-D (GSDMD) pathway on NETs release and the development of organ damage during COVID-19. METHODS: We performed a single-cell transcriptome analysis in public data of bronchoalveolar lavage. Then, we enrolled 63 hospitalized patients with moderate and severe COVID-19. We analyze in blood and lung tissue samples the expression of GSDMD, presence of NETs, and signaling pathways upstreaming. Furthermore, we analyzed the treatment with disulfiram in a mouse model of SARS-CoV-2 infection. RESULTS: We found that the SARS-CoV-2 virus directly activates the pore-forming protein GSDMD that triggers NET production and organ damage in COVID-19. Single-cell transcriptome analysis revealed that the expression of GSDMD and inflammasome-related genes were increased in COVID-19 patients. High expression of active GSDMD associated with NETs structures was found in the lung tissue of COVID-19 patients. Furthermore, we showed that activation of GSDMD in neutrophils requires active caspase1/4 and live SARS-CoV-2, which infects neutrophils. In a mouse model of SARS-CoV-2 infection, the treatment with disulfiram inhibited NETs release and reduced organ damage. CONCLUSION: These results demonstrated that GSDMD-dependent NETosis plays a critical role in COVID-19 immunopathology and suggests GSDMD as a novel potential target for improving the COVID-19 therapeutic strategy.


Subject(s)
COVID-19 Drug Treatment , Extracellular Traps , Animals , Disulfiram/metabolism , Extracellular Traps/metabolism , Mice , Neutrophils/metabolism , SARS-CoV-2
17.
Anaerobe ; 75: 102577, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35490916

ABSTRACT

OBJECTIVES: The impact of rheumatoid arthritis (RA) on the shaping of the oral and gut microbiome raises the question of whether and how RA treatment modifies microbial communities. We examined changes in the oral and gut microbiota in a mouse model of antigen-induced arthritis (AIA) treated or not with methotrexate (MTX). METHODS: Maxillae and stools were evaluated by the MiSeq platform of the V4 region of the 16S rRNA gene. Alveolar bone parameters were analysed by micro-computed tomography. Moreover, arthritis-induced changes in hyperalgesia and oedema were assessed, along with the impact on periodontal bone health. RESULTS: Microbial communities in MTX-treated AIA mice revealed distinct clusters compared to the control and AIA groups. Overall, MTX impacted the richness and variability of microorganisms in the oral-gut axis microbiome at the phylum level. Regarding the oral microbiome, while in the control group the most dominant phylum was Firmicutes, in the AIA group there was a shift towards the predominance of Campilobacteriota and Bacteroidetes associated with the disease. MTX treatment led to greater dominance of the health-associated phylum Proteobacteria. In the gut microbiome, AIA induction resulted in increased abundance of the Verrucomicrobiota phylum, and MTX treatment restored its levels compared to control. Importantly, the MTX-treated AIA animals had significantly less periodontal bone loss, as well as decreased hyperalgesia and joint oedema compared to the AIA animals. CONCLUSION: Data suggest the benefit of MTX treatment in protecting alveolar bone, in addition to providing new insights on the drug-microbiome interaction in the course of RA.


Subject(s)
Alveolar Bone Loss , Arthritis, Experimental , Arthritis, Rheumatoid , Gastrointestinal Microbiome , Microbiota , Alveolar Bone Loss/drug therapy , Animals , Arthritis, Experimental/drug therapy , Arthritis, Rheumatoid/complications , Arthritis, Rheumatoid/drug therapy , Edema/complications , Hyperalgesia/complications , Methotrexate/pharmacology , Methotrexate/therapeutic use , Mice , RNA, Ribosomal, 16S/genetics , X-Ray Microtomography
18.
EMBO Mol Med ; 14(6): e15415, 2022 06 08.
Article in English | MEDLINE | ID: mdl-35438238

ABSTRACT

Inflammasomes sense intracellular clues of infection, damage, or metabolic imbalances. Activated inflammasome sensors polymerize the adaptor ASC into micron-sized "specks" to maximize caspase-1 activation and the maturation of IL-1 cytokines. Caspase-1 also drives pyroptosis, a lytic cell death characterized by leakage of intracellular content to the extracellular space. ASC specks are released among cytosolic content, and accumulate in tissues of patients with chronic inflammation. However, if extracellular ASC specks contribute to disease, or are merely inert remnants of cell death remains unknown. Here, we show that camelid-derived nanobodies against ASC (VHHASC ) target and disassemble post-pyroptotic inflammasomes, neutralizing their prionoid, and inflammatory functions. Notably, pyroptosis-driven membrane perforation and exposure of ASC specks to the extracellular environment allowed VHHASC to target inflammasomes while preserving pre-pyroptotic IL-1ß release, essential to host defense. Systemically administrated mouse-specific VHHASC attenuated inflammation and clinical gout, and antigen-induced arthritis disease. Hence, VHHASC neutralized post-pyroptotic inflammasomes revealing a previously unappreciated role for these complexes in disease. VHHASC are the first biologicals that disassemble pre-formed inflammasomes while preserving their functions in host defense.


Subject(s)
Inflammasomes , Single-Domain Antibodies , Animals , CARD Signaling Adaptor Proteins/metabolism , Caspase 1/metabolism , Humans , Inflammasomes/metabolism , Inflammation/metabolism , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis
19.
Sci Total Environ ; 809: 151097, 2022 Feb 25.
Article in English | MEDLINE | ID: mdl-34695477

ABSTRACT

Tobacco combustion exposure worsens rheumatoid arthritis (RA). Non-combustible tobacco devices, as heat-not-burn tobacco (HNBT), are emerging as harm reduction to smokers by releasing nicotine and lower combustible tobacco products. Nevertheless, HNBT toxicity remains unclear. Hence, here we investigated the impacts of the tobacco combustible product (cigarette smoke; CS) or HNBT vapor exposures on antigen-induced arthritis (AIA) in C57BL/6 mice. Animals were exposed to airflow, HNBT vapor, or CS during 1 h/twice a day, under the Health Canada Intense (HCI) smoking regime, between days 14 to 20 after the first immunization. At day 21, 16 h after the last exposures, mice were i.a. challenged and the AIA effects were evaluated 24 h later. CS- or HNBT-exposed mice presented equivalent blood nicotine levels. CS exposure worsened articular symptoms, pulmonary inflammation, and expression of lung metallothioneins. Nevertheless, CS or HNBT exposures reduced lymphoid organs' cellularity, splenocyte proliferation and IL-2 secretion. Additional in vitro CS or HNBT exposures confirmed the harmful effects on splenocytes, which were partially mediated by the activation of nicotine/α7nAchR pathway. Associated, data demonstrate the toxic mechanisms of CS or HNBT inhalation at HCI regime on RA, and highlight that further investigations are fundamental to assure the toxicity of emerging tobacco products on the immune system during specific challenges.


Subject(s)
Arthritis, Rheumatoid , Electronic Nicotine Delivery Systems , Tobacco Products , Aerosols , Animals , Hot Temperature , Inhalation Exposure , Mice , Mice, Inbred C57BL , Smoke , Smoking , Nicotiana , Tobacco Products/toxicity
20.
Antioxidants (Basel) ; 10(6)2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34200499

ABSTRACT

Rheumatoid arthritis (RA) development is strongly associated with cigarette smoke exposure, which activates the aryl hydrocarbon receptor (AhR) as a trigger for Th17 inflammatory pathways. We previously demonstrated that the exposure to hydroquinone (HQ), one of the major compounds of cigarette tar, aggravates the arthritis symptomatology in rats. However, the mechanisms related to the HQ-related RA still remain elusive. Cell viability, cytokine secretion, and gene expression were measured in RA human fibroblast-like synoviocytes (RAHFLS) treated with HQ and stimulated or not with TNF-α. Antigen-induced arthritis (AIA) was also elicited in wild type (WT), AhR -/- or IL-17R -/- C57BL/6 mice upon daily exposure to nebulized HQ (25ppm) between days 15 to 21. At day 21, mice were challenged with mBSA and inflammatory parameters were assessed. The in vitro HQ treatment up-regulated TNFR1, TNFR2 expression, and increased ROS production. The co-treatment of HQ and TNF-α enhanced the IL-6 and IL-8 secretion. However, the pre-incubation of RAHFLS with an AhR antagonist inhibited the HQ-mediated cell proliferation and gene expression profile. About the in vivo approach, the HQ exposure worsened the AIA symptoms (edema, pain, cytokines secretion and NETs formation) in WT mice. These AIA effects were abolished in HQ-exposed AhR -/- and IL-17R -/- animals though. Our data demonstrated the harmful HQ influence over the onset of arthritis through the activation and proliferation of synoviocytes. The HQ-related RA severity was also associated with the activation of AhR and IL-17 pathways, highlighting how cigarette smoke compounds can contribute to the RA progression.

SELECTION OF CITATIONS
SEARCH DETAIL
...