Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
Front Immunol ; 15: 1363156, 2024.
Article in English | MEDLINE | ID: mdl-38953028

ABSTRACT

Introduction: Human Herpesvirus 6B (HHV-6B) impedes host immune responses by downregulating class I MHC molecules (MHC-I), hindering antigen presentation to CD8+ T cells. Downregulation of MHC-I disengages inhibitory receptors on natural killer (NK) cells, resulting in activation and killing of the target cell if NK cell activating receptors such as NKG2D have engaged stress ligands upregulated on the target cells. Previous work has shown that HHV-6B downregulates three MHC-like stress ligands MICB, ULBP1, and ULBP3, which are recognized by NKG2D. The U20 glycoprotein of the related virus HHV-6A has been implicated in the downregulation of ULBP1, but the precise mechanism remains undetermined. Methods: We set out to investigate the role of HHV-6B U20 in modulating NK cell activity. We used HHV-6B U20 expressed as a recombinant protein or transduced into target cells, as well as HHV-6B infection, to investigate binding interactions with NK cell ligands and receptors and to assess effects on NK cell activation. Small-angle X-ray scattering was used to align molecular models derived from machine-learning approaches. Results: We demonstrate that U20 binds directly to ULBP1 with sub-micromolar affinity. Transduction of U20 decreases NKG2D binding to ULBP1 at the cell surface but does not decrease ULBP1 protein levels, either at the cell surface or in toto. HHV-6B infection and soluble U20 have the same effect. Transduction of U20 blocks NK cell activation in response to cell-surface ULBP1. Structural modeling of the U20 - ULBP1 complex indicates some similarities to the m152-RAE1γ complex.


Subject(s)
GPI-Linked Proteins , Herpesvirus 6, Human , Killer Cells, Natural , Lymphocyte Activation , NK Cell Lectin-Like Receptor Subfamily K , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Herpesvirus 6, Human/immunology , GPI-Linked Proteins/metabolism , GPI-Linked Proteins/immunology , NK Cell Lectin-Like Receptor Subfamily K/metabolism , NK Cell Lectin-Like Receptor Subfamily K/immunology , Lymphocyte Activation/immunology , Protein Binding , Viral Proteins/immunology , Viral Proteins/metabolism , Glycoproteins/immunology , Glycoproteins/metabolism , Intracellular Signaling Peptides and Proteins
2.
GMS J Med Educ ; 41(1): Doc6, 2024.
Article in English | MEDLINE | ID: mdl-38504861

ABSTRACT

Background: While patient care often involves interprofessional collaboration, interprofessional teaching formats with participants from medical and physiotherapy fields are still rare. Furthermore, interprofessional education often takes place as separate courses and is not integrated into the clinical curriculum. Therefore, the goal of this project was to develop and implement interprofessional content into bedside teaching. Course development: The clinical subject of the course was "Parkinson's disease", as this condition allowed for the exemplary demonstration of interprofessional teamwork and different competencies. Through interprofessional bedside teaching and a specific clinical context, interprofessionalism was intended to be integrated and experienced as natural part of clinical practice. The bedside teaching was complemented with work in break-out groups and a lecture. Evaluation: The course was first conducted in the winter semester 2021/22. Participants were medical and physiotherapy students. Teaching teams were also interprofessional. A concurrent evaluation was carried out using the University of the West of England Interprofessional Questionnaire (UWE-IP) before and after course participation. UWE-IP scores in all sub-scales indicated a positive attitude, except for the "Interprofessional Learning" scale among physiotherapy students, which reflected a neutral attitude. Significant group differences were observed in the same scale at the pre-course time point between medical and physiotherapy students (p<0.01) and among medical students before and after course participation (p=0.02). Conclusion: The course proved to be well-suited for integrating interprofessional content into clinical education and can serve as a model for future teaching units. The evaluation reflected a positive attitude toward interprofessional learning.


Subject(s)
Parkinson Disease , Students, Medical , Humans , Learning , Curriculum , Educational Status
3.
Support Care Cancer ; 32(3): 188, 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38400942

ABSTRACT

PURPOSE: Pediatric patients with cancer often develop chemotherapy-induced fever in neutropenia (FN), requiring emergency broad-spectrum antibiotics. Continuous temperature monitoring can lead to earlier FN detection and therapy with improved outcomes. We aimed to compare the feasibility of continuous core temperature monitoring with timely data availability between two wearable devices (WDs) in pediatric oncology patients undergoing chemotherapy. METHODS: In this prospective observational two-center study, 20 patients (median age: 8 years) undergoing chemotherapy simultaneously wore two WDs (CORE®, Everion®) for 14 days. The predefined goal was core temperature recorded in sufficient quality and available within ≤ 30 min during ≥ 18/24 h for ≥ 7/14 days in more than 15 patients. RESULTS: More patients reached the goal with CORE® (n = 13) versus Everion® (n = 3) (difference, 50% p < 0.001). After correcting for the transmission bottleneck caused by two WDs transmitting via one gateway, these numbers increased (n = 15 versus n = 14; difference, 5%; p = 0.69). CORE® measurements corresponded better to ear temperatures (n = 528; mean bias, - 0.07 °C; mean absolute difference, 0.35 °C) than Everion® measurements (n = 532; - 1.06 °C; 1.10 °C). Acceptance rates for the WDs were 95% for CORE® and 89% for Everion®. CONCLUSION: The CORE® fulfilled the predefined feasibility criterion (15 of 20 patients) after correction for transmission bottleneck, and the Everion® nearly fulfilled it. Continuous core temperature recording of good quality and with timely data availability was feasible from preschool to adolescent patients undergoing chemotherapy for cancer. These results encourage the design of randomized controlled trials on continuously monitored core temperature in pediatric patients. CLINICALTRIALS: gov (NCT04914702) on June 7, 2021.


Subject(s)
Neoplasms , Wearable Electronic Devices , Child, Preschool , Adolescent , Humans , Child , Temperature , Body Temperature , Neoplasms/drug therapy , Prospective Studies
4.
Nat Commun ; 15(1): 1121, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38321047

ABSTRACT

The first step in disease pathogenesis for arboviruses is the establishment of infection following vector transmission. For La Crosse virus (LACV), the leading cause of pediatric arboviral encephalitis in North America, and other orthobunyaviruses, the initial course of infection in the skin is not well understood. Using an intradermal (ID) model of LACV infection in mice, we find that the virus infects and replicates nearly exclusively within skin-associated muscle cells of the panniculus carnosus (PC) and not in epidermal or dermal cells like most other arbovirus families. LACV is widely myotropic, infecting distal muscle cells of the peritoneum and heart, with limited infection of draining lymph nodes. Surprisingly, muscle cells are resistant to virus-induced cell death, with long term low levels of virus release progressing through the Golgi apparatus. Thus, skin muscle may be a key cell type for the initial infection and spread of arboviral orthobunyaviruses.


Subject(s)
Arboviruses , Bunyaviridae Infections , Encephalitis, California , La Crosse virus , Orthobunyavirus , Humans , Child , Animals , Mice , Virus Replication , Muscles
5.
Mov Disord ; 38(10): 1901-1913, 2023 10.
Article in English | MEDLINE | ID: mdl-37655363

ABSTRACT

BACKGROUND: To date, studies on positron emission tomography (PET) with 18 F-fluorodeoxyglucose (FDG) in progressive supranuclear palsy (PSP) usually included PSP cohorts overrepresenting patients with Richardson's syndrome (PSP-RS). OBJECTIVES: To evaluate FDG-PET in a patient sample representing the broad phenotypic PSP spectrum typically encountered in routine clinical practice. METHODS: This retrospective, multicenter study included 41 PSP patients, 21 (51%) with RS and 20 (49%) with non-RS variants of PSP (vPSP), and 46 age-matched healthy controls. Two state-of-the art methods for the interpretation of FDG-PET were compared: visual analysis supported by voxel-based statistical testing (five readers) and automatic covariance pattern analysis using a predefined PSP-related pattern. RESULTS: Sensitivity and specificity of the majority visual read for the detection of PSP in the whole cohort were 74% and 72%, respectively. The percentage of false-negative cases was 10% in the PSP-RS subsample and 43% in the vPSP subsample. Automatic covariance pattern analysis provided sensitivity and specificity of 93% and 83% in the whole cohort. The percentage of false-negative cases was 0% in the PSP-RS subsample and 15% in the vPSP subsample. CONCLUSIONS: Visual interpretation of FDG-PET supported by voxel-based testing provides good accuracy for the detection of PSP-RS, but only fair sensitivity for vPSP. Automatic covariance pattern analysis outperforms visual interpretation in the detection of PSP-RS, provides clinically useful sensitivity for vPSP, and reduces the rate of false-positive findings. Thus, pattern expression analysis is clinically useful to complement visual reading and voxel-based testing of FDG-PET in suspected PSP. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Movement Disorders , Supranuclear Palsy, Progressive , Humans , Fluorodeoxyglucose F18 , Positron-Emission Tomography/methods , Retrospective Studies , Supranuclear Palsy, Progressive/diagnosis
6.
J Virol ; 97(2): e0189022, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36688652

ABSTRACT

Roseoloviruses (human herpesvirus 6A [HHV-6A], -6B, and -7) infect >90% of the human population during early childhood and are thought to remain latent or persistent throughout the life of the host. As such, these viruses are among the most pervasive and stealthy of all viruses; they must necessarily excel at escaping immune detection throughout the life of the host, and yet, very little is known about how these viruses so successfully escape host defenses. Here, we characterize the expression, trafficking, and posttranslational modifications of the HHV6B U20 gene product, which is encoded within a block of genes unique to the roseoloviruses. HHV-6B U20 trafficked slowly through the secretory system, receiving several posttranslational modifications to its N-linked glycans, indicative of surface-expressed glycoproteins, and eventually reaching the cell surface before being internalized. Interestingly, U20 is also phosphorylated on at least one Ser, Thr, or Tyr residue. These results provide a framework to understand the role(s) of U20 in evading host defenses. IMPORTANCE The roseolovirus U20 proteins are virus-encoded integral membrane glycoproteins possessing class I major histocompatibility complex (MHC)-like folds. Surprisingly, although U20 proteins from HHV-6A and -6B share 92% identity, recent studies ascribe different functions to HHV6A U20 and HHV6B U20. HHV6A U20 was shown to downregulate NKG2D ligands, while HHV6B U20 was shown to inhibit tumor necrosis factor alpha (TNF-α)-induced apoptosis during nonproductive infection with HHV6B (E. Kofod-Olsen, K. Ross-Hansen, M. H. Schleimann, D. K. Jensen, et al., J Virol 86:11483-11492, 2012, https://doi.org/10.1128/jvi.00847-12; A. E. Chaouat, B. Seliger, O. Mandelboim, D. Schmiedel, Front Immunol 12:714799, 2021, https://doi.org/10.3389/fimmu.2021.714799). Here, we have performed cell biological and biochemical characterization of the trafficking, glycosylation, and posttranslational modifications occurring on HHV6B U20.


Subject(s)
Membrane Glycoproteins , Roseolovirus Infections , Viral Proteins , Humans , Herpesvirus 6, Human/genetics , Herpesvirus 6, Human/immunology , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Roseolovirus Infections/immunology , Roseolovirus Infections/virology , Viral Proteins/genetics , Viral Proteins/immunology , Immune Evasion
7.
Brain ; 146(5): 1831-1843, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36227727

ABSTRACT

Instability of simple DNA repeats has been known as a common cause of hereditary ataxias for over 20 years. Routine genetic diagnostics of these phenotypically similar diseases still rely on an iterative workflow for quantification of repeat units by PCR-based methods of limited precision. We established and validated clinical nanopore Cas9-targeted sequencing, an amplification-free method for simultaneous analysis of 10 repeat loci associated with clinically overlapping hereditary ataxias. The method combines target enrichment by CRISPR-Cas9, Oxford Nanopore long-read sequencing and a bioinformatics pipeline using the tools STRique and Megalodon for parallel detection of length, sequence, methylation and composition of the repeat loci. Clinical nanopore Cas9-targeted sequencing allowed for the precise and parallel analysis of 10 repeat loci associated with adult-onset ataxia and revealed additional parameter such as FMR1 promotor methylation and repeat sequence required for diagnosis at the same time. Using clinical nanopore Cas9-targeted sequencing we analysed 100 clinical samples of undiagnosed ataxia patients and identified causative repeat expansions in 28 patients. Parallel repeat analysis enabled a molecular diagnosis of ataxias independent of preconceptions on the basis of clinical presentation. Biallelic expansions within RFC1 were identified as the most frequent cause of ataxia. We characterized the RFC1 repeat composition of all patients and identified a novel repeat motif, AGGGG. Our results highlight the power of clinical nanopore Cas9-targeted sequencing as a readily expandable workflow for the in-depth analysis and diagnosis of phenotypically overlapping repeat expansion disorders.


Subject(s)
Cerebellar Ataxia , Spinocerebellar Degenerations , Adult , Humans , Ataxia/genetics , Cerebellar Ataxia/genetics , Computational Biology , High-Throughput Nucleotide Sequencing , Fragile X Mental Retardation Protein
8.
mBio ; 13(6): e0283822, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36445695

ABSTRACT

Despite recent advances in our understanding of pathogenic access to the central nervous system (CNS), the mechanisms by which intracellular pathogens disseminate within the dense cellular network of neural tissue remain poorly understood. To address this issue, longitudinal analysis of Toxoplasma gondii dissemination in the brain was conducted using 2-photon imaging through a cranial window in living mice that transgenically express enhanced green fluorescent protein (eGFP)-claudin-5. Extracellular T. gondii parasites were observed migrating slowly (1.37 ± 1.28 µm/min) and with low displacement within the brain. In contrast, a population of highly motile infected cells transported vacuoles of T. gondii significantly faster (6.30 ± 3.09 µm/min) and with a higher displacement than free parasites. Detailed analysis of microglial dynamics using CX3CR1-GFP mice revealed that T. gondii-infected microglia remained stationary, and infection did not increase the extension/retraction of microglial processes. The role of infiltrating immune cells in shuttling T. gondii was examined by labeling of peripheral hematopoietic cells with anti-CD45 antibody. Infected CD45+ cells were found crawling along the CNS vessel walls and trafficked T. gondii within the brain parenchyma at significantly higher speeds (3.35 ± 1.70 µm/min) than extracellular tachyzoites. Collectively, these findings highlight a dual role for immune cells in neuroprotection and in facilitating parasite dissemination within the brain. IMPORTANCE T. gondii is a foodborne parasite that infects the brain and can cause fatal encephalitis in immunocompromised individuals. However, there is a limited understanding of how the parasites disseminate through the brain and evade immune clearance. We utilized intravital imaging to visualize extracellular T. gondii tachyzoites and infected cells migrating within the infected mouse brain during acute infection. The infection of motile immune cells infiltrating the brain from the periphery significantly increased the dissemination of T. gondii in the brain compared to that of free parasites migrating using their own motility: the speed and displacement of these infected cells would enable them to cover nearly 1 cm of distance per day! Among the infiltrating cells, T. gondii predominantly infected monocytes and CD8+ T cells, indicating that the parasite can hijack immune cells that are critical for controlling the infection in order to enhance their dissemination within the brain.


Subject(s)
Toxoplasma , Mice , Animals , Toxoplasma/physiology , CD8-Positive T-Lymphocytes , Brain/pathology , Central Nervous System , Monocytes
9.
Eur J Cancer ; 171: 1-9, 2022 08.
Article in English | MEDLINE | ID: mdl-35696884

ABSTRACT

BACKGROUND: Epidemiology of Clostridioides difficile infection (CDI) in paediatric cancer patients is uncertain. The primary objective was to describe the prevalence of CDI outcomes among paediatric patients receiving cancer treatments. Secondary objectives were to describe clinical features of CDI, propose a definition of severe CDI and to determine risk factors for CDI clinical outcomes. METHODS: A multi-centre retrospective cohort study that included paediatric patients (1-18 years of age) receiving cancer treatments with CDI. Severe CDI definition was achieved by consensus. Univariable and multivariable regression was conducted to evaluate risk factors for CDI outcomes. RESULTS: There were 627 eligible patients who experienced 721 CDI episodes. The prevalence of clinical cure was 82.9%, recurrence was 9.6%, global cure was 75.0% and repeated new CDI episode was 12.8%. The proposed definition of severe CDI was the presence of colitis, pneumatosis intestinalis, pseudomembranous colitis, ileus or surgery for CDI, occurring in 70 (9.7%) episodes. In univariable regression, initial oral metronidazole or initial oral vancomycin were not significantly associated with failure to achieve clinical cure or CDI recurrence. In multiple regression, oral metronidazole was significantly associated with higher odds (odds ratio (OR) 1.7, 95% confidence interval (CI) 1.0-2.7) and oral vancomycin was significantly associated with lower odds (OR 0.4, 95% CI 0.2-0.8) of repeated new episodes. CONCLUSION: The prevalence of clinical cure was 82.9% and recurrence was 9.6% in pediatric patients receiving cancer treatments. Severe CDI, as per our proposed definition, occurred in 9.7% episodes. Initial oral vancomycin was significantly associated with a reduction in repeated new CDI episodes.


Subject(s)
Clostridioides difficile , Clostridium Infections , Hematopoietic Stem Cell Transplantation , Neoplasms , Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/therapeutic use , Child , Clostridium Infections/drug therapy , Clostridium Infections/epidemiology , Clostridium Infections/etiology , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Metronidazole , Neoplasms/chemically induced , Neoplasms/epidemiology , Neoplasms/therapy , Recurrence , Retrospective Studies , Vancomycin/adverse effects , Vancomycin/therapeutic use
10.
11.
Front Immunol ; 13: 864898, 2022.
Article in English | MEDLINE | ID: mdl-35444636

ABSTRACT

Human roseolovirus U20 and U21 are type I membrane glycoproteins that have been implicated in immune evasion by interfering with recognition of classical and non-classical MHC proteins. U20 and U21 are predicted to be type I glycoproteins with extracytosolic immunoglobulin-like domains, but detailed structural information is lacking. AlphaFold and RoseTTAfold are next generation machine-learning-based prediction engines that recently have revolutionized the field of computational three-dimensional protein structure prediction. Here, we review the structural biology of viral immunoevasins and the current status of computational structure prediction algorithms. We use these computational tools to generate structural models for U20 and U21 proteins, which are predicted to adopt MHC-Ia-like folds with closed MHC platforms and immunoglobulin-like domains. We evaluate these structural models and place them within current understanding of the structural basis for viral immune evasion of T cell and natural killer cell recognition.


Subject(s)
Herpesvirus 6, Human , Herpesvirus 7, Human , Roseolovirus Infections , Herpesvirus 6, Human/metabolism , Herpesvirus 7, Human/metabolism , Humans , Models, Structural , Viral Proteins/metabolism
12.
J Parkinsons Dis ; 12(3): 905-916, 2022.
Article in English | MEDLINE | ID: mdl-35068416

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is associated with various non-motor symptoms, including cognitive deterioration. OBJECTIVE: Here, we used data from the DEMPARK/LANDSCAPE cohort to describe the association between progression of cognitive profiles and the PD motor phenotypes: postural instability and gait disorder (PIGD), tremor-dominant (TR-D), and not-determined (ND). METHODS: Demographic, clinical, and neuropsychological six-year longitudinal data of 711 PD-patients were included (age: M = 67.57; 67.4% males). We computed z-transformed composite scores for a priori defined cognitive domains. Analyses were controlled for age, gender, education, and disease duration. To minimize missing data and drop-outs, three-year follow-up data of 442 PD-patients was assessed with regard to the specific role of motor phenotype on cognitive decline using linear mixed modelling (age: M = 66.10; 68.6% males). RESULTS: Our study showed that in the course of the disease motor symptoms increased while MMSE and PANDA remained stable in all subgroups. After three-year follow-up, significant decline of overall cognitive performance for PIGD-patients were present and we found differences for motor phenotypes in attention (ß= -0.08, SE = 0.003, p < 0.006) and memory functions showing that PIGD-patients deteriorate per months by -0.006 compared to the ND-group (SE = 0.003, p = 0.046). Furthermore, PIGD-patients experienced more often difficulties in daily living. CONCLUSION: Over a period of three years, we identified distinct neuropsychological progression patterns with respect to different PD motor phenotypes, with early executive deficits yielding to a more amnestic profile in the later course. Here, in particular PIGD-patients worsened over time compared to TR-D and ND-patients, highlighting the greater risk of dementia for this motor phenotype.


Subject(s)
Cognitive Dysfunction , Gait Disorders, Neurologic , Parkinson Disease , Cognitive Dysfunction/complications , Female , Gait Disorders, Neurologic/diagnosis , Humans , Male , Neuropsychological Tests , Parkinson Disease/diagnosis , Phenotype , Postural Balance , Tremor/diagnosis
13.
Neurobiol Aging ; 109: 31-42, 2022 01.
Article in English | MEDLINE | ID: mdl-34649002

ABSTRACT

Recently, it was shown that patients with Parkinson's disease (PD) who exhibit an "Alzheimer's disease (AD)-like" pattern of brain atrophy are at greater risk for future cognitive decline. This study aimed to investigate whether this association is domain-specific and whether atrophy associated with brain aging also relates to cognitive impairment in PD. SPARE-AD, an MRI index capturing AD-like atrophy, and atrophy-based estimates of brain age were computed from longitudinal structural imaging data of 178 PD patients and 84 healthy subjects from the LANDSCAPE cohort. All patients underwent an extensive neuropsychological test battery. Patients diagnosed with mild cognitive impairment or dementia were found to have higher SPARE-AD scores as compared to patients with normal cognition and healthy controls. All patient groups showed increased brain age. SPARE-AD predicted impairment in memory, language and executive functions, whereas advanced brain age was associated with deficits in attention and working memory. Data suggest that SPARE-AD and brain age are differentially related to domain-specific cognitive decline in PD. The underlying pathomechanisms remain to be determined.


Subject(s)
Aging/pathology , Aging/psychology , Brain/pathology , Cognition , Cognitive Dysfunction/etiology , Cognitive Dysfunction/pathology , Parkinson Disease/pathology , Parkinson Disease/psychology , Aged , Alzheimer Disease/pathology , Atrophy , Brain/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Cohort Studies , Female , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Neuropsychological Tests , Parkinson Disease/complications , Parkinson Disease/diagnosis
14.
Circulation ; 144(17): 1409-1428, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34694888

ABSTRACT

BACKGROUND: Complex molecular programs in specific cell lineages govern human heart development. Hypoplastic left heart syndrome (HLHS) is the most common and severe manifestation within the spectrum of left ventricular outflow tract obstruction defects occurring in association with ventricular hypoplasia. The pathogenesis of HLHS is unknown, but hemodynamic disturbances are assumed to play a prominent role. METHODS: To identify perturbations in gene programs controlling ventricular muscle lineage development in HLHS, we performed whole-exome sequencing of 87 HLHS parent-offspring trios, nuclear transcriptomics of cardiomyocytes from ventricles of 4 patients with HLHS and 15 controls at different stages of heart development, single cell RNA sequencing, and 3D modeling in induced pluripotent stem cells from 3 patients with HLHS and 3 controls. RESULTS: Gene set enrichment and protein network analyses of damaging de novo mutations and dysregulated genes from ventricles of patients with HLHS suggested alterations in specific gene programs and cellular processes critical during fetal ventricular cardiogenesis, including cell cycle and cardiomyocyte maturation. Single-cell and 3D modeling with induced pluripotent stem cells demonstrated intrinsic defects in the cell cycle/unfolded protein response/autophagy hub resulting in disrupted differentiation of early cardiac progenitor lineages leading to defective cardiomyocyte subtype differentiation/maturation in HLHS. Premature cell cycle exit of ventricular cardiomyocytes from patients with HLHS prevented normal tissue responses to developmental signals for growth, leading to multinucleation/polyploidy, accumulation of DNA damage, and exacerbated apoptosis, all potential drivers of left ventricular hypoplasia in absence of hemodynamic cues. CONCLUSIONS: Our results highlight that despite genetic heterogeneity in HLHS, many mutations converge on sequential cellular processes primarily driving cardiac myogenesis, suggesting novel therapeutic approaches.


Subject(s)
Hypoplastic Left Heart Syndrome/genetics , Organogenesis/genetics , Genetic Heterogeneity , Humans
15.
Int J Mol Sci ; 22(17)2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34502092

ABSTRACT

Arthropod-borne viruses, referred to collectively as arboviruses, infect millions of people worldwide each year and have the potential to cause severe disease. They are predominately transmitted to humans through blood-feeding behavior of three main groups of biting arthropods: ticks, mosquitoes, and sandflies. The pathogens harbored by these blood-feeding arthropods (BFA) are transferred to animal hosts through deposition of virus-rich saliva into the skin. Sometimes these infections become systemic and can lead to neuro-invasion and life-threatening viral encephalitis. Factors intrinsic to the arboviral vectors can greatly influence the pathogenicity and virulence of infections, with mounting evidence that BFA saliva and salivary proteins can shift the trajectory of viral infection in the host. This review provides an overview of arbovirus infection and ways in which vectors influence viral pathogenesis. In particular, we focus on how saliva and salivary gland extracts from the three dominant arbovirus vectors impact the trajectory of the cellular immune response to arbovirus infection in the skin.


Subject(s)
Arbovirus Infections/transmission , Arboviruses/pathogenicity , Arthropod Vectors/virology , Saliva/virology , Animals , Arthropod Vectors/physiology , Host-Pathogen Interactions , Humans , Saliva/metabolism
16.
Pharmaceuticals (Basel) ; 14(7)2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34208847

ABSTRACT

Since their independent discovery by Frederick Twort in 1915 and Felix d'Herelle in 1917, bacteriophages have captured the attention of scientists for more than a century. They are the most abundant organisms on the planet, often outnumbering their bacterial hosts by tenfold in a given environment, and they constitute a vast reservoir of unexplored genetic information. The increased prevalence of antibiotic resistant pathogens has renewed interest in the use of naturally obtained phages to combat bacterial infections, aka phage therapy. The development of tools to modify phages, genetically or chemically, combined with their structural flexibility, cargo capacity, ease of propagation, and overall safety in humans has opened the door to a myriad of applications. This review article will introduce readers to many of the varied and ingenious ways in which researchers are modifying phages to move them well beyond their innate ability to target and kill bacteria.

17.
Neuroimage ; 242: 118438, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34332042

ABSTRACT

Working memory (WM) performance depends on the ability to extract relevant while inhibiting irrelevant information from entering the WM storage. This distractor inhibition ability can be trained and is known to induce transfer effects on WM performance. Here we asked whether transfer on WM can be boosted by transcranial direct current stimulation (tDCS) during a single-session distractor inhibition training. As WM performance is ascribed to the frontoparietal network, in which prefrontal areas are associated with inhibiting distractors and posterior parietal areas with storing information, we placed the anode over the prefrontal and the cathode over the posterior parietal cortex during a single-session distractor inhibition training. This network-oriented stimulation protocol should enhance inhibition processes by shifting the neural activity from posterior to prefrontal regions. WM improved after a single-session distractor inhibition training under verum stimulation but only in subjects with a high WM capacity. In subjects with a low WM capacity, verum tDCS reduced the transfer effects on WM. We assume tDCS to strengthen the frontostriatal pathway in individuals with a high WM capacity leading to efficient inhibition of distractors. In contrast, the cathodal stimulation of the posterior parietal cortex might have hindered usual compensational mechanism in low capacity subjects, i.e. maintaining also irrelevant information in memory. Our results thus stress the need to adjust tDCS protocols to well-founded knowledge about neural networks and individual cognitive differences.


Subject(s)
Individuality , Inhibition, Psychological , Memory, Short-Term/physiology , Prefrontal Cortex/physiology , Transcranial Direct Current Stimulation/methods , Adolescent , Adult , Cognition , Female , Humans , Male , Neuropsychological Tests , Parietal Lobe/physiology , Young Adult
18.
Theranostics ; 11(13): 6138-6153, 2021.
Article in English | MEDLINE | ID: mdl-33995650

ABSTRACT

Bio-engineered myocardium has great potential to substitute damaged myocardium and for studies of myocardial physiology and disease, but structural and functional immaturity still implies limitations. Current protocols of engineered heart tissue (EHT) generation fall short of simulating the conditions of postnatal myocardial growth, which are characterized by tissue expansion and increased mechanical load. To investigate whether these two parameters can improve EHT maturation, we developed a new approach for the generation of cardiac tissues based on biomimetic stimulation under application of continuously increasing stretch. Methods: EHTs were generated by assembling cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CM) at high cell density in a low collagen hydrogel. Maturation and growth of the EHTs were induced in a custom-made biomimetic tissue culture system that provided continuous electrical stimulation and medium agitation along with progressive stretch at four different increments. Tissues were characterized after a three week conditioning period. Results: The highest rate of stretch (S3 = 0.32 mm/day) increased force development by 5.1-fold compared to tissue with a fixed length, reaching contractility of 11.28 mN/mm². Importantly, intensely stretched EHTs developed physiological length-dependencies of active and passive forces (systolic/diastolic ratio = 9.47 ± 0.84), and a positive force-frequency relationship (1.25-fold contractility at 180 min-1). Functional markers of stretch-dependent maturation included enhanced and more rapid Ca2+ transients, higher amplitude and upstroke velocity of action potentials, and pronounced adrenergic responses. Stretch conditioned hiPSC-CMs displayed structural improvements in cellular volume, linear alignment, and sarcomere length (2.19 ± 0.1 µm), and an overall upregulation of genes that are specifically expressed in adult cardiomyocytes. Conclusions: With the intention to simulate postnatal heart development, we have established techniques of tissue assembly and biomimetic culture that avoid tissue shrinkage and yield muscle fibers with contractility and compliance approaching the properties of adult myocardium. This study demonstrates that cultivation under progressive stretch is a feasible way to induce growth and maturation of stem cell-derived myocardium. The novel tissue-engineering approach fulfills important requirements of disease modelling and therapeutic tissue replacement.


Subject(s)
Induced Pluripotent Stem Cells/cytology , Myocardium , Myocytes, Cardiac/cytology , Stress, Mechanical , Tissue Culture Techniques , Tissue Engineering , Biomimetic Materials , Bioreactors , Cell Size , Diastole , Electric Stimulation , Excitation Contraction Coupling , Humans , Hydrogels , Muscle Spindles , Myofibrils/physiology , Myofibrils/ultrastructure , Organoids , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Systole , Tissue Culture Techniques/instrumentation , Tissue Culture Techniques/methods
19.
Front Neurol ; 12: 617944, 2021.
Article in English | MEDLINE | ID: mdl-33815248

ABSTRACT

Introduction: Trimethylamine-N-oxide (TMAO) is correlated with atherosclerosis and vascular diseases such as coronary heart disease and ischemic stroke. The aim of the study was to investigate whether TMAO levels are different in symptomatic vs. asymptomatic cerebrovascular atherosclerosis. Methods: This was a prospective, case-control study, conducted at a tertiary care university hospital. Patients were included if they had large-artery atherosclerosis (TOAST criteria). Symptomatic patients with ischemic stroke were compared with asymptomatic patients. As primary endpoint, TMAO levels on admission were compared between symptomatic and asymptomatic patients. Univariable analysis was performed using Mann-Whitney U test and multivariable analysis using binary logistic regression. TMAO values were adjusted for glomerular filtration rate (GFR), age, and smoking. Results: Between 2018 and 2020, 82 symptomatic and asymptomatic patients were recruited. Median age was 70 years; 65% were male. Comparing symptomatic (n = 42) and asymptomatic (n = 40) patients, no significant differences were found in univariable analysis in TMAO [3.96 (IQR 2.30-6.73) vs. 5.36 (3.59-8.68) µmol/L; p = 0.055], GFR [87 (72-97) vs. 82 (71-90) ml/min*1.73 m2; p = 0.189] and age [71 (60-79) vs. 69 (67-75) years; p = 0.756]. In multivariable analysis, TMAO was not a predictor of symptomatic cerebrovascular disease after adjusting for age and GFR [OR 1.003 (95% CI: 0.941-1.070); p = 0.920]. In a sensitivity analysis, we only analyzed patients with symptomatic stenosis and excluded patients with occlusion of brain-supplying arteries. Again, TMAO was not a significant predictor of symptomatic stenosis [OR 1.039 (0.965-1.120), p = 0.311]. Conclusion: TMAO levels could not be used to differentiate between symptomatic and asymptomatic cerebrovascular disease in our study.

20.
Genes (Basel) ; 11(9)2020 08 25.
Article in English | MEDLINE | ID: mdl-32854198

ABSTRACT

Multiple sclerosis (MS) is an inflammatory demyelinating disease of the Central Nervous System (CNS). Currently, it is estimated that 30-40% of the phenotypic variability of MS can be explained by genetic factors. However, low susceptibility variants identified through Genome Wide Association Study (GWAS) were calculated to explain about 50% of the heritability. Whether familial high-risk variants also contribute to heritability is a subject of controversy. In the last few years, several familial variants have been nominated, but none of them have been unequivocally confirmed. One reason for this may be that genetic heterogeneity and reduced penetrance are hindering detection. Sequencing a large number of MS families is needed to answer this question. In this study, we performed whole exome sequencing in four multi-case families, of which at least three affected individuals per family were analyzed. We identified a total of 138 rare variants segregating with disease in each of the families. Although no single variant showed convincing evidence for disease causation, some genes seemed particularly interesting based on their biological function. The main aim of this study was to provide a complete list of all rare segregating variants to provide the possibility for other researchers to cross-check familial candidate genes in an unbiased manner.


Subject(s)
Exome/genetics , Genetic Predisposition to Disease/genetics , Multiple Sclerosis/genetics , Adolescent , Adult , Female , Genetic Testing/methods , Humans , Male , Middle Aged , Pedigree , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...