Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 62(51): 21224-21232, 2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38051936

ABSTRACT

Strongly donating scorpionate ligands support the study of high-valent transition metal chemistry; however, their use is frequently limited by oxidative degradation. To address this concern, we report the synthesis of a tris(imidazol-5-ylidene)borate ligand featuring trifluoromethyl groups surrounding its coordination pocket. This ligand represents the first example of a chelating poly(imidazol-5-ylidene) mesoionic carbene ligand, a scaffold that is expected to be extremely donating. The {NiNO}10 complex of this ligand, as well as that of a previously reported strongly donating tris(imidazol-2-ylidene)borate, has been synthesized and characterized. This new ligand's strong donor properties, as measured by the υNO of its {NiNO}10 complex and natural bonding orbital second-order perturbative energy analysis, are at par with those of the well-studied alkyl-substituted tris(imidazol-2-ylidene)borates, which are known to effectively stabilize high-valent intermediates. The good donor properties of this ligand, despite the electron-withdrawing trifluoromethyl substituents, arise from the strongly donating imidazol-5-ylidene mesoionic carbene arms. These donor properties, when combined with the robustness of trifluoromethyl groups toward oxidative decomposition, suggest this ligand scaffold will be a useful platform in the study of oxidizing high-valent transition-metal species.

2.
ACS Catal ; 13(19): 12673-12680, 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37822863

ABSTRACT

Deoxygenation of nitrous oxide (N2O) has significant environmental implications, as it is not only a potent greenhouse gas but is also the main substance responsible for the depletion of ozone in the stratosphere. This has spurred significant interest in molecular complexes that mediate N2O deoxygenation. Natural N2O reduction occurs via a Cu cofactor, but there is a notable dearth of synthetic molecular Cu catalysts for this process. In this work, we report a selective molecular Cu catalyst for the electrochemical reduction of N2O to N2 using H2O as the proton source. Cyclic voltammograms show that increasing the H2O concentration facilitates the deoxygenation of N2O, and control experiments with a Zn(II) analogue verify an essential role for Cu. Theory and spectroscopy support metal-ligand cooperative catalysis between Cu(I) and a reduced tetraimidazolyl-substituted radical pyridine ligand (MeIm4P2Py = 2,6-(bis(bis-2-N-methylimidazolyl)phosphino)pyridine), which can be observed by Electron Paramagnetic Resonance (EPR) spectroscopy. Comparison with biological processes suggests a common theme of supporting electron transfer moieties in enabling Cu-mediated N2O reduction.

3.
J Phys Chem Lett ; 14(43): 9548-9555, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37856336

ABSTRACT

Recently, there have been several experimental demonstrations of how the rates of concerted proton electron transfer (CPET) are affected by stepwise thermodynamic parameters of only proton (ΔG°PT) or electron (ΔG°ET) transfer. Semiclassical structure-activity relationships have been invoked to rationalize these linear free energy relationships, but it is not clear how they would manifest in a nonadiabatic reaction. Using density functional theory calculations, we demonstrate how a decrease in ΔG°PT can lead to transition state imbalance in a nonadiabatic framework. We then use these calculations to anchor a theoretical model that reproduces experimental trends with ΔG°PT and ΔG°ET. Our results reconcile predictions from semiclassical transition state theory with models that treat proton transfer quantum mechanically in CPET reactivity, make new predictions about the importance of basicity for uphill CPET reactions, and suggest similar treatments may be possible for other nonadiabatic reactions.

4.
Chem Commun (Camb) ; 59(55): 8584-8587, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37340816

ABSTRACT

There has been recent interest about how the rates of concerted proton electron transfer (CPET) are affected by the thermodynamic parameters of intermediates from stepwise PT or ET reactions. Semiclassical arguments have been used to explain these trends despite the importance of quantum mechanical tunneling in CPET reactions. Here we report variable temperature kinetic isotope effect (KIE) data for the reactivity of a terminal Co-oxo complex with C-H bonds. The KIEs for the oxidation of both 9,10-dihydroanthracene (DHA) and fluorene have significant tunneling contributions and fluorene has a largely temperature-insensitive KIE which is inconsistent with semiclassical models. These findings support recent calls for a more detailed understanding of tunneling effects in thermodynamically imbalanced CPET reactions.


Subject(s)
Protons , Transition Elements , Hydrogen/chemistry , Temperature , Oxidation-Reduction , Isotopes , Kinetics
5.
J Am Chem Soc ; 145(10): 5664-5673, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36867838

ABSTRACT

Transition metal-oxo complexes are key intermediates in a variety of oxidative transformations, notably C-H bond activation. The relative rate of C-H bond activation mediated by transition metal-oxo complexes is typically predicated on substrate bond dissociation free energy in cases with a concerted proton-electron transfer (CPET). However, recent work has demonstrated that alternative stepwise thermodynamic contributions such as acidity/basicity or redox potentials of the substrate/metal-oxo may dominate in some cases. In this context, we have found basicity-governed concerted activation of C-H bonds with the terminal CoIII-oxo complex PhB(tBuIm)3CoIIIO. We have been interested in testing the limits of such basicity-dependent reactivity and have synthesized an analogous, more basic complex, PhB(AdIm)3CoIIIO, and studied its reactivity with H-atom donors. This complex displays a higher degree of imbalanced CPET reactivity than PhB(tBuIm)3CoIIIO with C-H substrates, and O-H activation of phenol substrates displays mechanistic crossover to stepwise proton transfer-electron transfer (PTET) reactivity. Analysis of the thermodynamics of proton transfer (PT) and electron transfer (ET) reveals a distinct thermodynamic crossing point between concerted and stepwise reactivity. Furthermore, the relative rates of stepwise and concerted reactivity suggest that maximally imbalanced systems provide the fastest CPET rates up to the point of mechanistic crossover, which results in slower product formation.

6.
J Am Chem Soc ; 143(49): 20849-20862, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34856101

ABSTRACT

The selective hydroxylation of aliphatic C-H bonds remains a challenging but broadly useful transformation. Nature has evolved systems that excel at this reaction, exemplified by cytochrome P450 enzymes, which use an iron-oxo intermediate to activate aliphatic C-H bonds with k1 > 1400 s-1 at 4 °C. Many synthetic catalysts have been inspired by these enzymes and are similarly proposed to use transition metal-oxo intermediates. However, most examples of well-characterized transition metal-oxo species are not capable of reacting with strong, aliphatic C-H bonds, resulting in a lack of understanding of what factors facilitate this reactivity. Here, we report the isolation and characterization of a new terminal CoIII-oxo complex, PhB(AdIm)3CoIIIO. Upon oxidation, a transient CoIV-oxo intermediate is generated that is capable of hydroxylating aliphatic C-H bonds with an extrapolated k1 for C-H activation >130 s-1 at 4 °C, comparable to values observed in cytochrome P450 enzymes. Experimental thermodynamic values and DFT analysis demonstrate that, although the initial C-H activation step in this reaction is endergonic, the overall reaction is driven by an extremely exergonic radical rebound step, similar to what has been proposed in cytochrome P450 enzymes. The rapid C-H hydroxylation reactivity displayed in this well-defined system provides insight into how hydroxylation is accomplished by biological systems and similarly potent synthetic oxidants.


Subject(s)
Adamantane/analogs & derivatives , Alcohols/chemical synthesis , Coordination Complexes/chemistry , Oxidants/chemistry , Catalysis , Cobalt/chemistry , Density Functional Theory , Hydroxylation , Ligands , Models, Chemical , Oxidation-Reduction
7.
Inorg Chem ; 60(18): 13854-13860, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34197705

ABSTRACT

Late-transition-metal oxo and imide complexes play an important role in the catalytic functionalization and activation of small molecules. An emerging theme in this area over the past few decades has been the use of lower coordination numbers, and pseudotetrahedral geometries in particular, to stabilize what would otherwise be highly reactive species. However, the bonding structure in d6 oxo and imide complexes in this geometry is ambiguous. These species are typically depicted with a triple bond; however, recent experimental evidence suggests significant empirical differences between these complexes and other triply bonded complexes with lower d counts. Here we use a suite of computational orbital localization methods and electron density analyses to probe the bonding structure of isoelectronic d6 CoIII oxo and imide complexes. These analyses suggest that a triple-bond description is inaccurate because of a dramatically weakened σ interaction. While the exact bond order in these cases is necessarily dependent on the model used, several metrics suggest that the strength of the metal-O/N bond is most similar to that of other formally doubly bonded complexes.

8.
Chem Sci ; 12(11): 4173-4183, 2021 Jan 29.
Article in English | MEDLINE | ID: mdl-34163690

ABSTRACT

Transition metal oxo species are key intermediates for the activation of strong C-H bonds. As such, there has been interest in understanding which structural or electronic parameters of metal oxo complexes determine their reactivity. Factors such as ground state thermodynamics, spin state, steric environment, oxygen radical character, and asynchronicity have all been cited as key contributors, yet there is no consensus on when each of these parameters is significant or the relative magnitude of their effects. Herein, we present a thorough statistical analysis of parameters that have been proposed to influence transition metal oxo mediated C-H activation. We used density functional theory (DFT) to compute parameters for transition metal oxo complexes and analyzed their ability to explain and predict an extensive data set of experimentally determined reaction barriers. We found that, in general, only thermodynamic parameters play a statistically significant role. Notably, however, there are independent and significant contributions from the oxidation potential and basicity of the oxo complexes which suggest a more complicated thermodynamic picture than what has been shown previously.

9.
Chem Commun (Camb) ; 57(32): 3869-3872, 2021 Apr 25.
Article in English | MEDLINE | ID: mdl-33729221

ABSTRACT

Biology employs exquisite control over proton, electron, H-atom, or H2 transfer. Similar control in synthetic systems has the potential to facilitate efficient and selective catalysis. Here we report a dihydrazonopyrrole Ni complex where an H2 equivalent can be stored on the ligand periphery without metal-based redox changes and can be leveraged for catalytic hydrogenations. Kinetic and computational analysis suggests ligand hydrogenation proceeds by H2 association followed by H-H scission. This complex is an unusual example where a synthetic system can mimic biology's ability to mediate H2 transfer via secondary coordination sphere-based processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...