Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
PeerJ ; 11: e16413, 2023.
Article in English | MEDLINE | ID: mdl-38047024

ABSTRACT

The current consensus is that sexual selection is responsible for the rapid and diverse evolution of genitalia, with several mutually exclusive mechanisms under debate, including non-antagonistic, antagonistic and stabilizing mechanisms. We used the orb-web spider, Argiope lobata (Araneidae), as a study model to quantify the allometric relationship between body size and genitalia, and to test for any impact of genital structures on male mating success or outcome in terms of copulation duration, leg loss or cannibalism. Our data do not support the 'one-size-fits-all' hypothesis that predicts a negative allometric slope between genitalia and body size. Importantly, we measured both male and female genitalia, and there was no sex specific pattern in allometric slopes. Unexpectedly, we found no predictor for reproductive success as indicated by copulation duration, cannibalism, and leg loss.


Subject(s)
Spiders , Animals , Male , Female , Genitalia , Copulation , Genitalia, Female , Body Size
2.
Sci Rep ; 13(1): 366, 2023 01 07.
Article in English | MEDLINE | ID: mdl-36611080

ABSTRACT

Cooperation should only evolve if the direct and/or indirect benefits exceed the costs. Hence, cooperators are expected to generate selective benefits for themselves and the kin-group while defectors will impose costs. The subsocial spider, Australomisidia ergandros, shows consistent cooperation and defection tactics while foraging. Cooperative individuals are consistently likely to share prey with other group members whereas defector spiders rarely share the prey they acquired. Here, we assess costs and benefits of cooperation, and the causal determinants behind cooperative and defective phenotypes. We constructed experimental kin-colonies of A. ergandros composed of pure cooperative or defector foragers and show that pure cooperative groups had higher hunting success as they acquired prey more quickly with greater joint participation than pure defector groups. Importantly, defectors suffered higher mortality than cooperators and lost considerable weight. A social network approach using subadult spiders revealed that foraging tactic is sex dependent with males cooperating more frequently than females. Our results provide a rare empirical demonstration of sex-specific male cooperation that confer individual and kin-group benefits.


Subject(s)
Behavior, Animal , Spiders , Animals , Female , Male , Biological Evolution , Cooperative Behavior , Phenotype , Spiders/genetics
3.
Biol Rev Camb Philos Soc ; 98(2): 462-480, 2023 04.
Article in English | MEDLINE | ID: mdl-36307924

ABSTRACT

In species with separate sexes, females and males often differ in their morphology, physiology and behaviour. Such sex-specific traits are functionally linked to variation in reproductive competition, mate choice and parental care, which have all been linked to sex roles. At the 150th anniversary of Darwin's theory on sexual selection, the question of why patterns of sex roles vary within and across species remains a key topic in behavioural and evolutionary ecology. New theoretical, experimental and comparative evidence suggests that variation in the adult sex ratio (ASR) is a key driver of variation in sex roles. Here, we first define and discuss the historical emergence of the sex role concept, including recent criticisms and rebuttals. Second, we review the various sex ratios with a focus on ASR, and explore its theoretical links to sex roles. Third, we explore the causes, and especially the consequences, of biased ASRs, focusing on the results of correlational and experimental studies of the effect of ASR variation on mate choice, sexual conflict, parental care and mating systems, social behaviour, hormone physiology and fitness. We present evidence that animals in diverse societies are sensitive to variation in local ASR, even on short timescales, and propose explanations for conflicting results. We conclude with an overview of open questions in this field integrating demography, life history and behaviour.


Subject(s)
Gender Role , Sexual Behavior, Animal , Male , Animals , Female , Sexual Behavior, Animal/physiology , Sex Ratio , Reproduction , Biological Evolution , Sex Characteristics
4.
Naturwissenschaften ; 109(6): 51, 2022 Oct 29.
Article in English | MEDLINE | ID: mdl-36308596

ABSTRACT

Extended phenotypes engineered by animals can potentially improve safety and/or foraging. Whether the well-known trade-off between safety and foraging applies for extended phenotypes, and if so, how it is resolved has not been determined. Spiders build elaborate silk structures that serve as traps for their insect prey and often attach silken retreats (nests) to their capture webs. These extended phenotypes of spiders are made of silk that is considered costly since it is made of protein. Using the Indian social spider, Stegodyphus sarasinorum, we examined how simple proximal factors, like colony hunger state and group size, shape trade-offs in collectively built extended phenotypes that offer shelter and food. We found that well-fed colonies showed greater investment in retreat silk than starved colonies. However, the two groups did not differ in their investment in capture webs. Hence, our findings validate the starvation-risk taking hypothesis in an extended phenotypic paradigm by showing that hungry colonies trade-off retreat size for capture web, irrespective of group size.


Subject(s)
Spiders , Animals , Spiders/chemistry , Predatory Behavior , Silk/chemistry , Phenotype
5.
Proc Natl Acad Sci U S A ; 119(40): e2205942119, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36122198

ABSTRACT

Spiders, the most specious taxon of predators, have evolved an astounding range of predatory strategies, including group hunting, specialized silk traps, pheromone-loaded bolas, and aggressive mimicry. Spiders that hunt prey defended with behavioral, mechanical, or chemical means are under additional selection pressure to avoid injury and death. Ants are considered dangerous because they can harm or kill their predators, but some groups of spiders, such as the Theridiidae, have a very high diversification of ant-hunting species and strategies [J. Liu et al., Mol. Phylogenet. Evol. 94, 658-675 (2016)]. Here, we provide detailed behavioral analyses of the highly acrobatic Australian ant-slayer spider, Euryopis umbilicata (Theridiidae), that captures much larger and defended Camponotus ants on vertical tree trunks. The hunting sequence consists of ritualized steps performed within split seconds, resulting in an exceptionally high prey capture success rate.


Subject(s)
Ants , Predatory Behavior , Spiders , Animals , Australia , Pheromones , Predatory Behavior/physiology , Silk , Spiders/physiology , Trees
6.
PeerJ ; 10: e12839, 2022.
Article in English | MEDLINE | ID: mdl-35341059

ABSTRACT

Many ecological interactions of spiders with their potential prey and predators are affected by the visibility of their bodies and silk, especially in habitats with lower structural complexity that expose spiders. For instance, the surface of tree trunks harbours relatively limited structures to hide in and may expose residents to visual detection by prey and predators. Here we provide the first detailed description of the novel retreat building strategy of the tree trunk jumping spider Arasia mullion. Using fields surveys, we monitored and measured over 115 spiders and 554 silk retreats. These spiders build silk retreats on the exposed surface of tree trunks, where they remain as sedentary permanent residents. Furthermore, the spiders decorate the silk retreats with bark debris that they collect from the immediate surrounding. We discuss the role of silk decoration in the unusual sedentary behaviour of these spiders and the potential mechanisms that allow A. mullion to engineer their niche in a challenging habitat.


Subject(s)
Silk , Spiders , Animals , Silk/chemistry , Predatory Behavior , Ecosystem , Behavior, Animal
7.
R Soc Open Sci ; 9(1): 211806, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35116167

ABSTRACT

Reproduction often requires finding a mating partner. To this end, females of many arthropods advertise their presence to searching males via volatile chemical signals. Such pheromones are considered low-cost signals, although this notion is based on little evidence and has recently been challenged. Even when using comparatively low-cost signals, females should signal as little as possible to minimize costs while still ensuring mate attraction. Here, we test the strategic-signalling hypothesis using Argiope bruennichi. In this orb-weaving spider, egg maturation commences with adult moult, and females that do not attract a male in time will lay a large batch of unfertilized eggs approximately three weeks after maturation. Using GC-MS analyses, we show that virgin females enhance their signalling effort, i.e. pheromone quantity per unit body mass, with increasing age and approaching oviposition. We further demonstrate that pheromone release is condition dependent, suggesting the occurrence of physiological costs. Mate choice assays revealed that pheromone quantity is the only predictor of female attractiveness for males. In support of the strategic-signalling hypothesis, pheromone signals by female A. bruennichi become stronger with increased need as well as body condition, and might thus qualify as an honest signal of female quality.

8.
J Chem Ecol ; 48(3): 244-262, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35006525

ABSTRACT

Emerging evidence shows that the cuticular and silk lipids of spiders are structurally more diverse than those of insects, although only a relatively low number of species have been investigated so far. As in insects, such lipids might play a role as signals in various contexts. The wasp spider Argiope bruennichi has probably the best investigated chemical communication system within spiders, including the known structure of the female sex pheromone. Recently we showed that kin-recognition in A. bruennichi could be mediated through the cuticular compounds consisting of hydrocarbons and, to a much larger proportion, of wax esters. By use of mass spectrometry and various derivatization methods, these were identified as esters of 2,4-dimethylalkanoic acids and 1-alkanols of varying chain lengths, such as tetradecyl 2,4-dimethylheptadecanoate. A representative enantioselective synthesis of this compound was performed which proved the identifications and allowed us to postulate that the natural enantiomer likely has the (2R,4R)-configuration. Chemical profiles of the silk and cuticular lipids of females were similar, while male cuticular profiles differed from those of females. Major components of the male cuticular lipids were tridecyl 2,4-dimethyl-C17-19 alkanoates, whereas those of females were slightly longer, comprising tridecyl 2,4-dimethyl-C19-21 alkanoates. In addition, minor female-specific 4-methylalkyl esters were detected.


Subject(s)
Sex Attractants , Spiders , Wasps , Animals , Female , Hydrocarbons/analysis , Lipids/chemistry , Male
9.
Naturwissenschaften ; 109(1): 6, 2021 Dec 11.
Article in English | MEDLINE | ID: mdl-34894274

ABSTRACT

Examining the role of color in mate choice without testing what colors the study animal is capable of seeing can lead to ill-posed hypotheses and erroneous conclusions. Here, we test the seemingly reasonable assumption that the sexually dimorphic red coloration of the male jumping spider Saitis barbipes is distinguishable, by females, from adjacent black color patches. Using microspectrophotometry, we find clear evidence for photoreceptor classes with maximal sensitivity in the UV (359 nm) and green (526 nm), inconclusive evidence for a photoreceptor maximally sensitive in the blue (451 nm), and no evidence for a red photoreceptor. No colored filters within the lens or retina could be found to shift green sensitivity to red. To quantify and visualize whether females may nevertheless be capable of discriminating red from black color patches, we take multispectral images of males and calculate photoreceptor excitations and color contrasts between color patches. Red patches would be, at best, barely discriminable from black, and not discriminable from a low-luminance green. Some color patches that appear achromatic to human eyes, such as beige and white, strongly absorb UV wavelengths and would appear as brighter "spider-greens" to S. barbipes than the red color patches. Unexpectedly, we discover an iridescent UV patch that contrasts strongly with the UV-absorbing surfaces dominating the rest of the spider. We propose that red and black coloration may serve identical purposes in sexual signaling, functioning to generate strong achromatic contrast with the visual background. The potential functional significance of red coloration outside of sexual signaling is discussed.


Subject(s)
Spiders , Animals , Female , Humans , Male
10.
Biol Lett ; 17(8): 20210260, 2021 08.
Article in English | MEDLINE | ID: mdl-34343436

ABSTRACT

Kin recognition, the ability to detect relatives, is important for cooperation, altruism and also inbreeding avoidance. A large body of research on kin recognition mechanisms exists for vertebrates and insects, while little is known for other arthropod taxa. In spiders, nepotism has been reported in social and solitary species. However, there are very few examples of kin discrimination in a mating context, one coming from the orb-weaver Argiope bruennichi. Owing to effective mating plugs and high rates of sexual cannibalism, both sexes of A. bruennichi are limited to a maximum of two copulations. Males surviving their first copulation can either re-mate with the current female (monopolizing paternity) or leave and search for another. Mating experiments have shown that males readily mate with sisters but are more likely to leave after one short copulation as compared with unrelated females, allowing them to search for another mate. Here, we ask whether the observed behaviour is based on chemical cues. We detected family-specific cuticular profiles that qualify as kin recognition cues. Moreover, correlations in the relative amounts of some of the detected substances between sexes within families indicate that kin recognition is likely based on subsets of cuticular substances, rather than entire profiles.


Subject(s)
Cannibalism , Spiders , Animals , Copulation , Cues , Female , Humans , Male , Sexual Behavior, Animal
11.
Ecol Evol ; 11(10): 5381-5392, 2021 May.
Article in English | MEDLINE | ID: mdl-34026014

ABSTRACT

The existence of consistent individual differences in behavior has been shown in a number of species, and several studies have found observable sex differences in these behaviors, yet their evolutionary implications remain unclear. Understanding the evolutionary dynamics of behavioral traits requires knowledge of their genetic architectures and whether this architecture differs between the sexes. We conducted a quantitative genetic study in a sexually size-dimorphic spider, Larinioides sclopetarius, which exhibits sex differences in adult lifestyles. We observed pedigreed spiders for aggression, activity, exploration, and boldness and used animal models to disentangle genetic and environmental influences on these behaviors. We detected trends toward (i) higher additive genetic variances in aggression, activity, and exploration in males than females, and (ii) difference in variances due to common environment/maternal effects, permanent environment and residual variance in aggression and activity with the first two variances being higher in males for both behaviors. We found no sex differences in the amount of genetic and environmental variance in boldness. The mean heritability estimates of aggression, activity, exploration, and boldness range from 0.039 to 0.222 with no sizeable differences between females and males. We note that the credible intervals of the estimates are large, implying a high degree of uncertainty, which disallow a robust conclusion of sex differences in the quantitative genetic estimates. However, the observed estimates suggest that sex differences in the quantitative genetic architecture of the behaviors cannot be ruled out. Notably, the present study suggests that genetic underpinnings of behaviors may differ between sexes and it thus underscores the importance of taking sex differences into account in quantitative genetic studies.

12.
BMC Evol Biol ; 20(1): 90, 2020 07 23.
Article in English | MEDLINE | ID: mdl-32703164

ABSTRACT

BACKGROUND: Mate choice is a taxonomically wide-spread phenomenon, mostly exerted by females although male mate choice occurs as well. While costs and benefits of choosiness have been well studied, the underlying mechanisms are largely unclear. Different models exist, namely best-of-n or threshold rules, based on sequential or simultaneous sampling, which differ in the required cognitive demands. We applied an experimental approach to shed light on the underlying mechanisms of male mate choice in the sexually cannibalistic spider Argiope bruennichi. Males are limited to two copulations and preferentially monopolise large females, while they may leave smaller females after a single copulation and resume mate search. Here, we utilised significant size-differences between females from Northern and Southern populations and presented males with three different-sized females that were matched for origin: all three females originated either from the same Northern European population as the males or from Southern populations where the smallest female was about the same size as the largest Northern female. This allowed testing the hypothesis that males base their mating tactic on a fixed local size threshold. We predicted Northern males to be choosy among Northern females, but to accept all Southern females since they would all be above that threshold. RESULTS: Males copulated with the first female they encountered, which was independent of her body size. Regardless of the females' origins, males chose a monogynous tactic with the largest female in the trio, while they left the smallest female after one copulation. The same pattern applied to Southern females even though the smallest females in the trio were of a similar size as monopolised Northern females. Since males have poor eyesight and did not actively sample all females, they likely have gained information about relative size differences between females based on volatile chemical cues only. CONCLUSIONS: Our findings suggest that male A. bruennichi can assess relative differences in mate quality and adjust their mating tactic to the prevailing conditions (Northern vs. Southern). We reject the presence of a locally-adapted fixed threshold and argue that our results are best explained by an adjustable threshold that was raised under Southern conditions.


Subject(s)
Cannibalism , Spiders/physiology , Animals , Body Size , Copulation/physiology , Female , Male , Models, Biological , Reproduction/physiology
13.
Dev Genes Evol ; 230(2): 155-172, 2020 03.
Article in English | MEDLINE | ID: mdl-32052129

ABSTRACT

Sexual reproduction is pervasive in animals and has led to the evolution of sexual dimorphism. In most animals, males and females show marked differences in primary and secondary sexual traits. The formation of sex-specific organs and eventually sex-specific behaviors is defined during the development of an organism. Sex determination processes have been extensively studied in a few well-established model organisms. While some key molecular regulators are conserved across animals, the initiation of sex determination is highly diverse. To reveal the mechanisms underlying the development of sexual dimorphism and to identify the evolutionary forces driving the evolution of different sexes, sex determination mechanisms must thus be studied in detail in many different animal species beyond the typical model systems. In this perspective article, we argue that spiders represent an excellent group of animals in which to study sex determination mechanisms. We show that spiders are sexually dimorphic in various morphological, behavioral, and life history traits. The availability of an increasing number of genomic and transcriptomic resources and functional tools provides a great starting point to scrutinize the extensive sexual dimorphism present in spiders on a mechanistic level. We provide an overview of the current knowledge of sex determination in spiders and propose approaches to reveal the molecular and genetic underpinnings of sexual dimorphism in these exciting animals.


Subject(s)
Gene Expression Regulation, Developmental/genetics , Sexual Behavior, Animal , Spiders/growth & development , Animals , Behavior/physiology , Female , Gene Expression Regulation, Developmental/physiology , Genomics , Genotype , Male , Phenotype , Sex Characteristics , Sex Determination Processes , Sexual Behavior, Animal/physiology , Spiders/anatomy & histology , Spiders/genetics , Spiders/physiology
14.
PeerJ ; 6: e5360, 2018.
Article in English | MEDLINE | ID: mdl-30123703

ABSTRACT

BACKGROUND: Sexual selection theory predicts that male investment in a current female should be a function of female density and male competition. While many studies have focused on male competition, the impact of female density on male mating investment has been widely neglected. Here, we aimed to close this gap and tested effects of mate density on male mating decisions in the orb-web spider Argiope bruennichi. Males of this species mutilate their genitalia during copulation, which reduces sperm competition and limits their mating rate to a maximum of two females (bigyny). The mating rate is frequently further reduced by female aggression and cannibalization. Males can reduce the risk of cannibalism if they jump off the female in time, but will then transfer fewer sperm. An alternative solution of this trade-off is to copulate longer, commit self-sacrifice and secure higher minimal paternity. The self-sacrificial strategy may be adaptive if prospective mating chances are uncertain. In A. bruennichi, this uncertainty may arise from quick changes in population dynamics. Therefore, we expected that males would immediately respond to information about low or high mate availability and opt for self-sacrifice after a single copulation under low mate availability. If male survival depends on information about prospective mating chances, we further predicted that under high mate availability, we would find a higher rate of males that leave the first mating partner to follow a bigynous mating strategy. METHOD: We used naïve males and compared their mating decisions among two treatments that differed in the number of signalling females. In the high mate availability treatment, males perceived pheromone signals from four adult, virgin females, while in the low mate availability treatment only one of four females was adult and virgin and the other three were penultimate and unreceptive. RESULTS: Males took more time to start mate searching if mate availability was low. However, a self-sacrificial strategy was not more likely under low mate availability. We found no effects of treatment on the duration of copulation, the probability to survive the first copulation or the probability of bigyny. Interestingly, survival chances depended on male size and were higher in small males. DISCUSSION: Our results do not support the hypothesis that mate density variation affects male mating investment, although they clearly perceived mate density, which they presumably assessed by pheromone quantity. One reason for the absence of male adjustments to mating tactics could be that adaptations to survive female attacks veil adaptations that facilitate mating decisions.

15.
Ecol Evol ; 8(1): 344-355, 2018 01.
Article in English | MEDLINE | ID: mdl-29321876

ABSTRACT

Informed mating decisions are often based on social cues providing information about prospective mating opportunities. Social information early in life can trigger developmental modifications and influence later mating decisions. A high adaptive value of such adjustments is particularly obvious in systems where potential mating rates are extremely limited and have to be carried out in a short time window. Males of the sexually cannibalistic spider Argiope bruennichi can achieve maximally two copulations which they can use for one (monogyny) or two females (bigyny). The choice between these male mating tactics should rely on female availability that males might assess through volatile sex pheromones emitted by virgin females. We predict that in response to those female cues, males of A. bruennichi should mature earlier and at a smaller body size and favor a bigynous mating tactic in comparison with controls. We sampled spiders from two areas close to the Southern and Northern species range to account for differences in mate quality and seasonality. In a fully factorial design, half of the subadult males from both areas obtained silk cues of females, while the other half remained without female exposure. Adult males were subjected to no-choice mating tests and could either monopolize the female or leave her (bigyny). We found that Southern males matured later and at a larger size than Northern males. Regardless of their origin, males also shortened the subadult stage in response to female cues, which, however, had no effects on male body mass. Contrary to our prediction, the frequencies of mating tactics were unaffected by the treatment. We conclude that while social cues during late development elicit adaptive life history adjustments, they are less important for the adjustment of mating decisions. We suggest that male tactics mostly rely on local information at the time of mate search.

16.
PeerJ ; 5: e4050, 2017.
Article in English | MEDLINE | ID: mdl-29158981

ABSTRACT

BACKGROUND: Animal growth is often constrained by unfavourable conditions and divergences from optimal body size can be detrimental to an individual's fitness, particularly in species with determinate growth and a narrow time-frame for life-time reproduction. Growth restriction in early juvenile stages can later be compensated by means of plastic developmental responses, such as adaptive catch-up growth (the compensation of growth deficits through delayed development). Although sex differences regarding the mode and degree of growth compensation have been coherently predicted from sex-specific fitness payoffs, inconsistent results imply a need for further research. We used the African Nephila senegalensis, representing an extreme case of female-biased sexual size dimorphism (SSD), to study fitness implications of sex-specific growth compensation. We predicted effective catch-up growth in early food-restricted females to result in full compensation of growth deficits and a life-time fecundity (LTF) equivalent to unrestricted females. Based on a stronger trade-off between size-related benefits and costs of a delayed maturation, we expected less effective catch-up growth in males. METHODS: We tracked the development of over one thousand spiders in different feeding treatments, e.g., comprising a fixed period of early low feeding conditions followed by unrestricted feeding conditions, permanent unrestricted feeding conditions, or permanent low feeding conditions as a control. In a second experimental section, we assessed female fitness by measuring LTF in a subset of females. In addition, we tested whether compensatory development affected the reproductive lifespan in both sexes and analysed genotype-by-treatment interactions as a potential cause of variation in life-history traits. RESULTS: Both sexes delayed maturation to counteract early growth restriction, but only females achieved full compensation of adult body size. Female catch-up growth resulted in equivalent LTF compared to unrestricted females. We found significant interactions between experimental treatments and sex as well as between treatments and family lineage, suggesting that family-specific responses contribute to the unusually large variation of life-history traits in Nephila spiders. Our feeding treatments had no effect on the reproductive lifespan in either sex. DISCUSSION: Our findings are in line with predictions of life-history theory and corroborate strong fecundity selection to result in full female growth compensation. Males showed incomplete growth compensation despite a delayed development, indicating relaxed selection on large size and a stronger trade-off between late maturation and size-related benefits. We suggest that moderate catch-up growth in males is still adaptive as a 'bet-hedging' strategy to disperse unavoidable costs between life-history traits affected by early growth restriction (the duration of development and adult size).

17.
J Insect Physiol ; 100: 128-132, 2017 07.
Article in English | MEDLINE | ID: mdl-28614727

ABSTRACT

Sexual cannibalism has long been hypothesized to be a foraging decision in which females consume males for the nutrients in their bodies. While few studies have documented fecundity benefits of sexual cannibalism, several recent studies have documented benefits of cannibalism to egg hatching success or offspring survival. We tested if small supplements of dietary essential nutrients fed to female spiders, Argiope bruennichi, would result in increases in offspring survival similar to those seen following sexual cannibalism. All female spiders were prevented from cannibalizing their mates and subsequently fed either: a dead male spider, or a similarly-sized dead fly with one of four nutrient supplements (water control, dietary essential fatty acids, dietary essential amino acids, or nonessential amino and fatty acids). Females that consumed a small supplement of dietary essential amino acids produced offspring that survived simulated overwintering conditions significantly longer than offspring of other treatments. While a previous study found a significant effect of cannibalism on offspring survival using field-collected males as prey, the current study, which used lab-reared males as prey, found no effect of sexual cannibalism on offspring survival. Hence, our results suggest that dietary essential amino acids, which may be sequestered by males from their diet, could be valuable supplements that increase the success of the offspring of cannibalistic females. Further work is needed to determine the source and identity of these dietary essential amino acids and if other essential nutrients (e.g., trace elements, vitamins, etc.) may also be limiting in female diets and affect offspring success.


Subject(s)
Longevity , Micronutrients/metabolism , Spiders/physiology , Animals , Feeding Behavior , Female , Reproduction
18.
Arthropod Struct Dev ; 46(2): 156-170, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27845202

ABSTRACT

Jumping spiders are known for their extraordinary cognitive abilities. The underlying nervous system structures, however, are largely unknown. Here, we explore and describe the anatomy of the brain in the jumping spider Marpissa muscosa (Clerck, 1757) by means of paraffin histology, X-ray microCT analysis and immunohistochemistry as well as three-dimensional reconstruction. In the prosoma, the CNS is a clearly demarcated mass that surrounds the esophagus. The anteriormost neuromere, the protocerebrum, comprises nine bilaterally paired neuropils, including the mushroom bodies and one unpaired midline neuropil, the arcuate body. Further ventrally, the synganglion comprises the cheliceral (deutocerebrum) and pedipalpal neuropils (tritocerebrum). Synapsin-immunoreactivity in all neuropils is generally strong, while allatostatin-immunoreactivity is mostly present in association with the arcuate body and the stomodeal bridge. The most prominent neuropils in the spider brain, the mushroom bodies and the arcuate body, were suggested to be higher integrating centers of the arthropod brain. The mushroom body in M. muscosa is connected to first and second order visual neuropils of the lateral eyes, and the arcuate body to the second order neuropils of the anterior median eyes (primary eyes) through a visual tract. The connection of both, visual neuropils and eyes and arcuate body, as well as their large size corroborates the hypothesis that these neuropils play an important role in cognition and locomotion control of jumping spiders. In addition, we show that the architecture of the brain of M. muscosa and some previously investigated salticids differs significantly from that of the wandering spider Cupiennius salei, especially with regard to structure and arrangement of visual neuropils and mushroom body. Thus, we need to explore the anatomical conformities and specificities of the brains of different spider taxa in order to understand evolutionary transformations of the arthropod brain.


Subject(s)
Spiders/anatomy & histology , Animals , Brain/anatomy & histology , Brain/cytology , Female , Ganglia/anatomy & histology , Ganglia/cytology , Histology , Immunohistochemistry , Microscopy, Confocal , Neuropil/cytology , X-Ray Microtomography
19.
BMC Evol Biol ; 16(1): 242, 2016 11 09.
Article in English | MEDLINE | ID: mdl-27829358

ABSTRACT

BACKGROUND: Genital diversity may arise through sexual conflict over polyandry, where male genital features function to manipulate female mating frequency against her interest. Correlated genital evolution across animal groups is consistent with this view, but a link between genital complexity and mating rates remains to be established. In sexually size dimorphic spiders, golden orbweaving spiders (Nephilidae) males mutilate their genitals to form genital plugs, but these plugs do not always prevent female polyandry. In a comparative framework, we test whether male and female genital complexity coevolve, and how these morphologies, as well as sexual cannibalism, relate to the evolution of mating systems. RESULTS: Using a combination of comparative tests, we show that male genital complexity negatively correlates with female mating rates, and that levels of sexual cannibalism negatively correlate with male mating rates. We also confirm a positive correlation between male and female genital complexity. The macroevolutionary trajectory is consistent with a repeated evolution from polyandry to monandry coinciding with the evolution towards more complex male genitals. CONCLUSIONS: These results are consistent with the predictions from sexual conflict theory, although sexual conflict may not be the only mechanism responsible for the evolution of genital complexity and mating systems. Nevertheless, our comparative evidence suggests that in golden orbweavers, male genital complexity limits female mating rates, and sexual cannibalism by females coincides with monogyny.


Subject(s)
Biological Evolution , Body Size , Genitalia, Male/physiology , Sex Characteristics , Sexual Behavior, Animal/physiology , Spiders/physiology , Animals , Female , Male , Phenotype , Phylogeny
20.
BMC Evol Biol ; 16: 170, 2016 Aug 26.
Article in English | MEDLINE | ID: mdl-27561330

ABSTRACT

BACKGROUND: Socially cued anticipatory plasticity (SCAP) has been proposed as a widespread mechanism of adaptive life-history shifts in semelparous species with extreme male mating investment. Such mating systems evolved several times independently in spiders and male reproductive success should critically depend on timely maturation and rapid location of a receptive and, ideally, virgin female. We experimentally investigated socially cued anticipatory plasticity in two sympatric, closely related Nephila species that share many components of their mating systems, but differ in the degree to which male reproductive success depends on mating with virgin females. Juveniles of both species were reared either in the presence or absence of virgin female silk cues. We predicted strong selection on socially cued plasticity in N. fenestrata in which males follow a highly specialized terminal investment strategy, but expected a weaker plastic response in N. senegalensis in which males lost the ability to monopolize females. RESULTS: Contrary to our predictions, N. fenestrata males presented with virgin female silk cues did not mature earlier than siblings reared isolated from such cues. Males in N. senegalensis, however, showed a significant response to female cues and matured several days earlier than control males. Plastic adjustment of maturation had no effect on male size. CONCLUSIONS: Our results indicate that a strong benefit of mating with virgins due to first male sperm priority does not necessarily promote socially cued anticipatory plasticity. We emphasize the bidirectional mode of developmental responses and suggest that this form of plasticity may not only yield benefits through accelerated maturation, but also by avoiding costs of precipitate maturation in the absence of female cues.


Subject(s)
Sexual Behavior, Animal , Social Behavior , Spiders/physiology , Animals , Cues , Female , Male , Reproduction/physiology , Spermatozoa/physiology , Spiders/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...