Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 13(7)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38607061

ABSTRACT

The lacrimal gland is crucial for maintaining ocular health by producing the aqueous component of the tear film, which hydrates and nourishes the ocular surface. Decreased production of this component results in dry eye disease, a condition affecting over 250 million people worldwide. However, the scarcity of primary human material for studying its underlying mechanisms and the absence of a cell model for human lacrimal gland epithelial cells present significant challenges. Here, we describe the generation of immortalized human lacrimal gland cell lines through the introduction of an SV40 antigen. We successfully isolated and characterized three cell clones from a female lacrimal gland donor, confirming their epithelial identity through genomic and protein analyses, including PCR, RNAseq, immunofluorescence and cultivation in a 3D spheroid model. Our findings represent a significant advancement, providing improved accessibility to investigate the molecular pathogenesis mechanisms of dry eye disease and potential therapeutic interventions. We identified the expression of typical epithelial cell marker genes and demonstrated the cells' capability to form 2D cell sheets and 3D spheroids. This establishment of immortalized human lacrimal gland cells with epithelial characteristics holds promise for future comprehensive studies, contributing to a deeper understanding of dry eye disease and its cellular mechanisms.


Subject(s)
Dry Eye Syndromes , Lacrimal Apparatus , Humans , Female , Lacrimal Apparatus/metabolism , Tears/metabolism , Dry Eye Syndromes/metabolism , Cell Line
2.
Eur J Neurosci ; 59(2): 308-315, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38086536

ABSTRACT

Multiple system atrophy (MSA) is a rare and rapidly progressive atypical parkinsonian disorder characterized by oligodendroglial cytoplasmic inclusions containing α-synuclein (α-syn), demyelination, inflammation and neuronal loss. To date, no disease-modifying therapy is available. Targeting α-syn-driven oligodendroglial dysfunction and demyelination presents a potential therapeutic approach for restricting axonal dysfunction, neuronal loss and disease progression. The present study investigated the promyelinogenic potential of sobetirome, a blood-brain barrier permeable and central nervous system selective thyromimetic in the context of an in vitro MSA model. Oligodendrocyte precursor cells (OPCs) were obtained from transgenic mice overexpressing human α-syn specifically in oligodendrocytes (MBP29 mouse line), a well-described MSA model, and non-transgenic littermates. mRNA and protein expression analyses revealed a substantial rescue effect of sobetirome on myelin-specific proteins in control and α-syn overexpressing oligodendrocytes. Furthermore, myelination analysis using nanofibres confirmed that sobetirome increases both the length and number of myelinated segments per oligodendrocyte in primary murine α-syn overexpressing oligodendrocytes and their respective control. These results suggest that sobetirome may be a promising thyromimetic compound targeting an important neuropathological hallmark of MSA.


Subject(s)
Demyelinating Diseases , Multiple System Atrophy , Phenols , Mice , Humans , Animals , Multiple System Atrophy/drug therapy , Multiple System Atrophy/genetics , Multiple System Atrophy/metabolism , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Acetates/metabolism , Mice, Transgenic , Oligodendroglia/metabolism , Demyelinating Diseases/metabolism , Disease Models, Animal
3.
Transl Neurodegener ; 12(1): 31, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37312133

ABSTRACT

BACKGROUND: Lysosomal dysfunction has been implicated in a number of neurodegenerative diseases such as Parkinson's disease (PD). Various molecular, clinical and genetic studies have highlighted a central role of lysosomal pathways and proteins in the pathogenesis of PD. Within PD pathology the synaptic protein alpha-synuclein (αSyn) converts from a soluble monomer to oligomeric structures and insoluble amyloid fibrils. The aim of this study was to unravel the effect of αSyn aggregates on lysosomal turnover, particularly focusing on lysosomal homeostasis and cathepsins. Since these enzymes have been shown to be directly involved in the lysosomal degradation of αSyn, impairment of their enzymatic capacity has extensive consequences. METHODS: We used patient-derived induced pluripotent stem cells and a transgenic mouse model of PD to examine the effect of intracellular αSyn conformers on cell homeostasis and lysosomal function in dopaminergic (DA) neurons by biochemical analyses. RESULTS: We found impaired lysosomal trafficking of cathepsins in patient-derived DA neurons and mouse models with αSyn aggregation, resulting in reduced proteolytic activity of cathepsins in the lysosome. Using a farnesyltransferase inhibitor, which boosts hydrolase transport via activation of the SNARE protein ykt6, we enhanced the maturation and proteolytic activity of cathepsins and thereby decreased αSyn protein levels. CONCLUSIONS: Our findings demonstrate a strong interplay between αSyn aggregation pathways and function of lysosomal cathepsins. It appears that αSyn directly interferes with the enzymatic function of cathepsins, which might lead to a vicious cycle of impaired αSyn degradation. Lysosomal trafficking of cathepsin D (CTSD), CTSL and CTSB is disrupted when alpha-synuclein (αSyn) is aggregated. This results in a decreased proteolytic activity of cathepsins, which directly mediate αSyn clearance. Boosting the transport of the cathepsins to the lysosome increases their activity and thus contributes to efficient αSyn degradation.


Subject(s)
Parkinson Disease , Synucleinopathies , Animals , Mice , alpha-Synuclein/genetics , Disease Models, Animal , Homeostasis
4.
Stem Cell Res ; 65: 102952, 2022 12.
Article in English | MEDLINE | ID: mdl-36283273

ABSTRACT

Aggregation of alpha-synuclein (aSyn) is closely linked to Parkinson's disease, probably due to the loss of physiological functions and/or gain of toxic functions of aggregated aSyn. Significant efforts have been made elucidating the physiological structure and function of aSyn, however, with limited success thus far in human-derived cells, partly because of restricted resources. Here, we developed two human-induced pluripotent stem cell lines using CRISPR/Cas9-mediated allele-specific frame-shift deletion of the aSyn encoding gene SNCA, resulting in homo- and heterozygous SNCA knockout. The generated cell lines are promising cellular tools for studying aSyn dosage-dependent functions and structural alterations in human neural cells.


Subject(s)
Induced Pluripotent Stem Cells , alpha-Synuclein , Humans , alpha-Synuclein/genetics , Gene Knockout Techniques , CRISPR-Cas Systems/genetics
5.
Int J Mol Sci ; 23(3)2022 Feb 05.
Article in English | MEDLINE | ID: mdl-35163733

ABSTRACT

Parkinson's disease (PD) is neuropathologically characterized by the loss of dopaminergic neurons and the deposition of aggregated alpha synuclein (aSyn). Mounting evidence suggests that neuritic degeneration precedes neuronal loss in PD. A possible underlying mechanism could be the interference of aSyn with microtubule organization in the neuritic development, as implied by several studies using cell-free model systems. In this study, we investigate the impact of aSyn on microtubule organization in aSyn overexpressing H4 neuroglioma cells and midbrain dopaminergic neuronal cells (mDANs) generated from PD patient-derived human induced pluripotent stem cells (hiPSCs) carrying an aSyn gene duplication (SNCADupl). An unbiased mass spectrometric analysis reveals a preferential binding of aggregated aSyn conformers to a number of microtubule elements. We confirm the interaction of aSyn with beta tubulin III in H4 and hiPSC-derived mDAN cell model systems, and demonstrate a remarkable redistribution of tubulin isoforms from the soluble to insoluble fraction, accompanied by a significantly increased insoluble aSyn level. Concordantly, SNCADupl mDANs show impaired neuritic phenotypes characterized by perturbations in neurite initiation and outgrowth. In summary, our findings suggest a mechanistic pathway, through which aSyn aggregation interferes with microtubule organization and induces neurite impairments.


Subject(s)
Induced Pluripotent Stem Cells , Parkinson Disease , alpha-Synuclein , Dopaminergic Neurons/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Microtubules/metabolism , Neurites/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , Tubulin/genetics , Tubulin/metabolism , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
6.
Exp Neurol ; 334: 113466, 2020 12.
Article in English | MEDLINE | ID: mdl-32949572

ABSTRACT

Senescence was recently linked to neurodegeneration and astrocytes are one of the major cell types to turn senescent under neurodegenerative conditions. Senescent astrocytes were detected in Parkinson's disease (PD) patients' brains besides reactive astrocytes, yet the difference between senescent and reactive astrocytes is unclear. We aimed to characterize senescent astrocytes in comparison to reactive astrocytes and investigate differences and similarities. In a cell culture model of human fetal astrocytes, we determined a unique senescent transcriptome distinct from reactive astrocytes, which comprises dysregulated pathways. Both, senescent and reactive human astrocytes activated a proinflammatory pattern. Astrocyte senescence was at least partially depending on active mechanistic-target-of-rapamycin (mTOR) and DNA-damage response signaling, both drivers of senescence. To further investigate how PD and senescence connect to each other, we asked if a PD-linked environmental factor induces senescence and if senescence impairs midbrain neurons. We could show that the PD-linked pesticide rotenone causes astrocyte senescence. We further delineate, that the senescent secretome exaggerates rotenone-induced neurodegeneration in midbrain neurons differentiated from human induced pluripotent stem cells (hiPSC) of PD patients with alpha-synuclein gene (SNCA) locus duplication.


Subject(s)
Astrocytes/metabolism , Cellular Senescence/physiology , Induced Pluripotent Stem Cells/metabolism , Oxidative Stress/physiology , Transcriptome/physiology , Astrocytes/drug effects , Cell Survival/drug effects , Cell Survival/physiology , Cells, Cultured , Cellular Senescence/drug effects , Female , Humans , Hydrogen Peroxide/toxicity , Induced Pluripotent Stem Cells/drug effects , Middle Aged , Oxidative Stress/drug effects , Parkinson Disease/metabolism , Parkinson Disease/pathology , Rotenone/toxicity , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism , Transcriptome/drug effects
7.
Hum Mol Genet ; 29(7): 1180-1191, 2020 05 08.
Article in English | MEDLINE | ID: mdl-32160287

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disorder characterized by protein inclusions mostly composed of aggregated forms of α-synuclein (α-Syn) and by the progressive degeneration of midbrain dopaminergic neurons (mDANs), resulting in motor symptoms. While other brain regions also undergo pathologic changes in PD, the relevance of α-Syn aggregation for the preferential loss of mDANs in PD pathology is not completely understood yet. To elucidate the mechanisms of the brain region-specific neuronal vulnerability in PD, we modeled human PD using human-induced pluripotent stem cells (iPSCs) from familial PD cases with a duplication (Dupl) of the α-Syn gene (SNCA) locus. Human iPSCs from PD Dupl patients and a control individual were differentiated into mDANs and cortical projection neurons (CPNs). SNCA dosage increase did not influence the differentiation efficiency of mDANs and CPNs. However, elevated α-Syn pathology, as revealed by enhanced α-Syn insolubility and phosphorylation, was determined in PD-derived mDANs compared with PD CPNs. PD-derived mDANs exhibited higher levels of reactive oxygen species and protein nitration levels compared with CPNs, which might underlie elevated α-Syn pathology observed in mDANs. Finally, increased neuronal death was observed in PD-derived mDANs compared to PD CPNs and to control mDANs and CPNs. Our results reveal, for the first time, a higher α-Syn pathology, oxidative stress level, and neuronal death rate in human PD mDANs compared with PD CPNs from the same patient. The finding implies the contribution of pathogenic α-Syn, probably induced by oxidative stress, to selective vulnerability of substantia nigra dopaminergic neurons in human PD.


Subject(s)
Induced Pluripotent Stem Cells/cytology , Oxidative Stress/genetics , Parkinson Disease/genetics , alpha-Synuclein/genetics , Brain/growth & development , Brain/metabolism , Brain/pathology , Cell Death/genetics , Cell Differentiation/genetics , Cell Line , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Humans , Induced Pluripotent Stem Cells/transplantation , Mesencephalon/metabolism , Mesencephalon/pathology , Neurites/metabolism , Neurites/pathology , Parkinson Disease/metabolism , Parkinson Disease/therapy , Substantia Nigra/metabolism , Substantia Nigra/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...