Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Curr Biol ; 32(20): 4372-4385.e7, 2022 10 24.
Article in English | MEDLINE | ID: mdl-36075218

ABSTRACT

The effect of the detailed connectivity of a neural circuit on its function and the resulting behavior of the organism is a key question in many neural systems. Here, we study the circuit for nociception in C. elegans, which is composed of the same neurons in the two sexes that are wired differently. We show that the nociceptive sensory neurons respond similarly in the two sexes, yet the animals display sexually dimorphic behaviors to the same aversive stimuli. To uncover the role of the downstream network topology in shaping behavior, we learn and simulate network models that replicate the observed dimorphic behaviors and use them to predict simple network rewirings that would switch behavior between the sexes. We then show experimentally that these subtle synaptic rewirings indeed flip behavior. Interestingly, when presented with aversive cues, rewired males were compromised in finding mating partners, suggesting that network topologies that enable efficient avoidance of noxious cues have a reproductive "cost." Our results present a deconstruction of the design of a neural circuit that controls sexual behavior and how to reprogram it.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Male , Caenorhabditis elegans/physiology , Caenorhabditis elegans Proteins/physiology , Nociception , Nervous System , Sensory Receptor Cells/physiology
2.
Neuron ; 109(5): 839-851.e9, 2021 03 03.
Article in English | MEDLINE | ID: mdl-33484641

ABSTRACT

Learning new rules and adopting novel behavioral policies is a prominent adaptive behavior of primates. We studied the dynamics of single neurons in the dorsal anterior cingulate cortex and putamen of monkeys while they learned new classification tasks every few days over a fixed set of multi-cue patterns. Representing the rules and the neuronal selectivity as vectors in the space spanned by a set of stimulus features allowed us to characterize neuronal dynamics in geometrical terms. We found that neurons in the cingulate cortex mainly rotated toward the rule, implying a policy search, whereas neurons in the putamen showed a magnitude increase that followed the rotation of cortical neurons, implying strengthening of confidence for the newly acquired rule-based policy. Further, the neural representation at the end of a session predicted next-day behavior, reflecting overnight retention. The novel framework for characterization of neural dynamics suggests complementing roles for the putamen and the anterior cingulate cortex.


Subject(s)
Decision Making/physiology , Gyrus Cinguli/physiology , Learning/physiology , Neurons/physiology , Putamen/physiology , Animals , Behavior, Animal , Macaca fascicularis , Male , Psychomotor Performance/physiology
3.
Adv Neural Inf Process Syst ; 34: 20295-20307, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35645551

ABSTRACT

The integration and transfer of information from multiple sources to multiple targets is a core motive of neural systems. The emerging field of partial information decomposition (PID) provides a novel information-theoretic lens into these mechanisms by identifying synergistic, redundant, and unique contributions to the mutual information between one and several variables. While many works have studied aspects of PID for Gaussian and discrete distributions, the case of general continuous distributions is still uncharted territory. In this work we present a method for estimating the unique information in continuous distributions, for the case of one versus two variables. Our method solves the associated optimization problem over the space of distributions with fixed bivariate marginals by combining copula decompositions and techniques developed to optimize variational autoencoders. We obtain excellent agreement with known analytic results for Gaussians, and illustrate the power of our new approach in several brain-inspired neural models. Our method is capable of recovering the effective connectivity of a chaotic network of rate neurons, and uncovers a complex trade-off between redundancy, synergy and unique information in recurrent networks trained to solve a generalized XOR task.

4.
Proc Natl Acad Sci U S A ; 117(40): 25066-25073, 2020 10 06.
Article in English | MEDLINE | ID: mdl-32948691

ABSTRACT

The brain represents and reasons probabilistically about complex stimuli and motor actions using a noisy, spike-based neural code. A key building block for such neural computations, as well as the basis for supervised and unsupervised learning, is the ability to estimate the surprise or likelihood of incoming high-dimensional neural activity patterns. Despite progress in statistical modeling of neural responses and deep learning, current approaches either do not scale to large neural populations or cannot be implemented using biologically realistic mechanisms. Inspired by the sparse and random connectivity of real neuronal circuits, we present a model for neural codes that accurately estimates the likelihood of individual spiking patterns and has a straightforward, scalable, efficient, learnable, and realistic neural implementation. This model's performance on simultaneously recorded spiking activity of >100 neurons in the monkey visual and prefrontal cortices is comparable with or better than that of state-of-the-art models. Importantly, the model can be learned using a small number of samples and using a local learning rule that utilizes noise intrinsic to neural circuits. Slower, structural changes in random connectivity, consistent with rewiring and pruning processes, further improve the efficiency and sparseness of the resulting neural representations. Our results merge insights from neuroanatomy, machine learning, and theoretical neuroscience to suggest random sparse connectivity as a key design principle for neuronal computation.


Subject(s)
Action Potentials/physiology , Brain/physiology , Neural Networks, Computer , Neurons/physiology , Algorithms , Humans , Machine Learning , Models, Neurological , Nerve Net/physiology , Neuronal Plasticity/physiology
5.
Elife ; 92020 08 25.
Article in English | MEDLINE | ID: mdl-32838839

ABSTRACT

The social interactions underlying group foraging and their benefits have been mostly studied using mechanistic models replicating qualitative features of group behavior, and focused on a single resource or a few clustered ones. Here, we tracked groups of freely foraging adult zebrafish with spatially dispersed food items and found that fish perform stereotypical maneuvers when consuming food, which attract neighboring fish. We then present a mathematical model, based on inferred functional interactions between fish, which accurately describes individual and group foraging of real fish. We show that these interactions allow fish to combine individual and social information to achieve near-optimal foraging efficiency and promote income equality within groups. We further show that the interactions that would maximize efficiency in these social foraging models depend on group size, but not on food distribution, and hypothesize that fish may adaptively pick the subgroup of neighbors they 'listen to' to determine their own behavior.


Subject(s)
Feeding Behavior/physiology , Social Behavior , Spatial Behavior/physiology , Animals , Female , Male , Models, Spatial Interaction , Zebrafish/physiology
6.
Nat Neurosci ; 23(4): 594, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32127691

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

7.
Front Integr Neurosci ; 13: 64, 2019.
Article in English | MEDLINE | ID: mdl-31736724

ABSTRACT

Rats can be trained to associate relative spatial locations of objects with the spatial location of rewards. Here we ask whether rats can localize static silent objects with other body parts in the dark, and if so with what resolution. We addressed these questions in trained rats, whose interactions with the objects were tracked at high-resolution before and after whisker trimming. We found that rats can use other body parts, such as trunk and ears, to localize objects. Localization resolution with non-whisking body parts (henceforth, 'body') was poorer than that obtained with whiskers, even when left with a single whisker at each side. Part of the superiority of whiskers was obtained via the use of multiple contacts. Transfer from whisker to body localization occurred within one session, provided that body contacts with the objects occurred before whisker trimming, or in the next session otherwise. This transfer occurred whether temporal cues were used for discrimination or when discrimination was based on spatial cues alone. Rats' decision in each trial was based on the sensory cues acquired in that trial and on decisions and reward locations in previous trials. When sensory cues were acquired by body contacts, rat decisions relied more on the reward location in previous trials. Overall, the results suggest that rats can generalize the idea of relative object location across different body parts, while preferring to rely on whiskers-based localization, which occurs earlier and conveys higher resolution.

8.
Nat Neurosci ; 22(12): 2013-2022, 2019 12.
Article in English | MEDLINE | ID: mdl-31768051

ABSTRACT

The prefrontal cortex (PFC) plays an important role in regulating social functions in mammals, and its dysfunction has been linked to social deficits in neurodevelopmental disorders. Yet little is known of how the PFC encodes social information and how social representations may be altered in such disorders. Here, we show that neurons in the medial PFC of freely behaving male mice preferentially respond to socially relevant olfactory cues. Population activity patterns in this region differed between social and nonsocial stimuli and underwent experience-dependent refinement. In mice lacking the autism-associated gene Cntnap2, both the categorization of sensory stimuli and the refinement of social representations were impaired. Noise levels in spontaneous population activity were higher in Cntnap2 knockouts and correlated with the degree to which social representations were disrupted. Our findings elucidate the encoding of social sensory cues in the medial PFC and provide a link between altered prefrontal dynamics and autism-associated social dysfunction.


Subject(s)
Membrane Proteins/physiology , Nerve Tissue Proteins/physiology , Olfactory Perception/physiology , Prefrontal Cortex/physiology , Social Behavior , Animals , Cues , Male , Membrane Proteins/genetics , Mice , Mice, Knockout , Nerve Tissue Proteins/genetics , Olfactory Perception/genetics
9.
PLoS One ; 13(3): e0193049, 2018.
Article in English | MEDLINE | ID: mdl-29513700

ABSTRACT

Recent developments in automated tracking allow uninterrupted, high-resolution recording of animal trajectories, sometimes coupled with the identification of stereotyped changes of body pose or other behaviors of interest. Analysis and interpretation of such data represents a challenge: the timing of animal behaviors may be stochastic and modulated by kinematic variables, by the interaction with the environment or with the conspecifics within the animal group, and dependent on internal cognitive or behavioral state of the individual. Existing models for collective motion typically fail to incorporate the discrete, stochastic, and internal-state-dependent aspects of behavior, while models focusing on individual animal behavior typically ignore the spatial aspects of the problem. Here we propose a probabilistic modeling framework to address this gap. Each animal can switch stochastically between different behavioral states, with each state resulting in a possibly different law of motion through space. Switching rates for behavioral transitions can depend in a very general way, which we seek to identify from data, on the effects of the environment as well as the interaction between the animals. We represent the switching dynamics as a Generalized Linear Model and show that: (i) forward simulation of multiple interacting animals is possible using a variant of the Gillespie's Stochastic Simulation Algorithm; (ii) formulated properly, the maximum likelihood inference of switching rate functions is tractably solvable by gradient descent; (iii) model selection can be used to identify factors that modulate behavioral state switching and to appropriately adjust model complexity to data. To illustrate our framework, we apply it to two synthetic models of animal motion and to real zebrafish tracking data.


Subject(s)
Algorithms , Behavior, Animal/physiology , Models, Statistical , Social Behavior , Animals , Ants/physiology , Computer Simulation , Fishes/physiology , Motion
10.
Proc Natl Acad Sci U S A ; 114(38): 10149-10154, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28874581

ABSTRACT

Individual computations and social interactions underlying collective behavior in groups of animals are of great ethological, behavioral, and theoretical interest. While complex individual behaviors have successfully been parsed into small dictionaries of stereotyped behavioral modes, studies of collective behavior largely ignored these findings; instead, their focus was on inferring single, mode-independent social interaction rules that reproduced macroscopic and often qualitative features of group behavior. Here, we bring these two approaches together to predict individual swimming patterns of adult zebrafish in a group. We show that fish alternate between an "active" mode, in which they are sensitive to the swimming patterns of conspecifics, and a "passive" mode, where they ignore them. Using a model that accounts for these two modes explicitly, we predict behaviors of individual fish with high accuracy, outperforming previous approaches that assumed a single continuous computation by individuals and simple metric or topological weighing of neighbors' behavior. At the group level, switching between active and passive modes is uncorrelated among fish, but correlated directional swimming behavior still emerges. Our quantitative approach for studying complex, multimodal individual behavior jointly with emergent group behavior is readily extensible to additional behavioral modes and their neural correlates as well as to other species.


Subject(s)
Models, Biological , Social Behavior , Swimming , Zebrafish , Animals , Female , Male
11.
Proc Natl Acad Sci U S A ; 114(22): 5589-5594, 2017 05 30.
Article in English | MEDLINE | ID: mdl-28507154

ABSTRACT

Individual behavior, in biology, economics, and computer science, is often described in terms of balancing exploration and exploitation. Foraging has been a canonical setting for studying reward seeking and information gathering, from bacteria to humans, mostly focusing on individual behavior. Inspired by the gradient-climbing nature of chemotaxis, the infotaxis algorithm showed that locally maximizing the expected information gain leads to efficient and ethological individual foraging. In nature, as well as in theoretical settings, conspecifics can be a valuable source of information about the environment. Whereas the nature and role of interactions between animals have been studied extensively, the design principles of information processing in such groups are mostly unknown. We present an algorithm for group foraging, which we term "socialtaxis," that unifies infotaxis and social interactions, where each individual in the group simultaneously maximizes its own sensory information and a social information term. Surprisingly, we show that when individuals aim to increase their information diversity, efficient collective behavior emerges in groups of opportunistic agents, which is comparable to the optimal group behavior. Importantly, we show the high efficiency of biologically plausible socialtaxis settings, where agents share little or no information and rely on simple computations to infer information from the behavior of their conspecifics. Moreover, socialtaxis does not require parameter tuning and is highly robust to sensory and behavioral noise. We use socialtaxis to predict distinct optimal couplings in groups of selfish vs. altruistic agents, reflecting how it can be naturally extended to study social dynamics and collective computation in general settings.


Subject(s)
Exploratory Behavior/physiology , Feeding Behavior/physiology , Information Seeking Behavior/physiology , Algorithms , Humans , Social Behavior
12.
Nat Neurosci ; 19(11): 1489-1496, 2016 11.
Article in English | MEDLINE | ID: mdl-27428651

ABSTRACT

Social encounters are associated with varying degrees of emotional arousal and stress. The mechanisms underlying adequate socioemotional balance are unknown. The medial amygdala (MeA) is a brain region associated with social behavior in mice. Corticotropin-releasing factor receptor type-2 (CRF-R2) and its specific ligand urocortin-3 (Ucn3), known components of the behavioral stress response system, are highly expressed in the MeA. Here we show that mice deficient in CRF-R2 or Ucn3 exhibit abnormally low preference for novel conspecifics. MeA-specific knockdown of Crfr2 (Crhr2) in adulthood recapitulated this phenotype. In contrast, pharmacological activation of MeA CRF-R2 or optogenetic activation of MeA Ucn3 neurons increased preference for novel mice. Furthermore, chemogenetic inhibition of MeA Ucn3 neurons elicited pro-social behavior in freely behaving groups of mice without affecting their hierarchal structure. These findings collectively suggest that the MeA Ucn3-CRF-R2 system modulates the ability of mice to cope with social challenges.


Subject(s)
Amygdala/metabolism , Receptors, Corticotropin-Releasing Hormone/metabolism , Social Behavior , Urocortins/metabolism , Animals , Behavior, Animal/physiology , Corticotropin-Releasing Hormone/metabolism , Inhibition, Psychological , Mice , Mice, Knockout , Neurons/metabolism , Receptors, Corticotropin-Releasing Hormone/genetics , Urocortins/genetics
13.
Curr Opin Neurobiol ; 37: 133-140, 2016 04.
Article in English | MEDLINE | ID: mdl-27016639

ABSTRACT

The ability to record the joint activity of large groups of neurons would allow for direct study of information representation and computation at the level of whole circuits in the brain. The combinatorial space of potential population activity patterns and neural noise imply that it would be impossible to directly map the relations between stimuli and population responses. Understanding of large neural population codes therefore depends on identifying simplifying design principles. We review recent results showing that strongly correlated population codes can be explained using minimal models that rely on low order relations among cells. We discuss the implications for large populations, and how such models allow for mapping the semantic organization of the neural codebook and stimulus space, and decoding.


Subject(s)
Models, Neurological , Neurons/physiology , Animals , Humans
14.
Elife ; 42015 Sep 08.
Article in English | MEDLINE | ID: mdl-26347983

ABSTRACT

Information is carried in the brain by the joint spiking patterns of large groups of noisy, unreliable neurons. This noise limits the capacity of the neural code and determines how information can be transmitted and read-out. To accurately decode, the brain must overcome this noise and identify which patterns are semantically similar. We use models of network encoding noise to learn a thesaurus for populations of neurons in the vertebrate retina responding to artificial and natural videos, measuring the similarity between population responses to visual stimuli based on the information they carry. This thesaurus reveals that the code is organized in clusters of synonymous activity patterns that are similar in meaning but may differ considerably in their structure. This organization is highly reminiscent of the design of engineered codes. We suggest that the brain may use this structure and show how it allows accurate decoding of novel stimuli from novel spiking patterns.


Subject(s)
Action Potentials , Retina/physiology , Retinal Ganglion Cells/physiology , Animals , Models, Neurological , Photic Stimulation , Urodela
16.
PLoS One ; 9(1): e85841, 2014.
Article in English | MEDLINE | ID: mdl-24465742

ABSTRACT

Adaptation in the retina is thought to optimize the encoding of natural light signals into sequences of spikes sent to the brain. While adaptive changes in retinal processing to the variations of the mean luminance level and second-order stimulus statistics have been documented before, no such measurements have been performed when higher-order moments of the light distribution change. We therefore measured the ganglion cell responses in the tiger salamander retina to controlled changes in the second (contrast), third (skew) and fourth (kurtosis) moments of the light intensity distribution of spatially uniform temporally independent stimuli. The skew and kurtosis of the stimuli were chosen to cover the range observed in natural scenes. We quantified adaptation in ganglion cells by studying linear-nonlinear models that capture well the retinal encoding properties across all stimuli. We found that the encoding properties of retinal ganglion cells change only marginally when higher-order statistics change, compared to the changes observed in response to the variation in contrast. By analyzing optimal coding in LN-type models, we showed that neurons can maintain a high information rate without large dynamic adaptation to changes in skew or kurtosis. This is because, for uncorrelated stimuli, spatio-temporal summation within the receptive field averages away non-gaussian aspects of the light intensity distribution.


Subject(s)
Adaptation, Ocular/radiation effects , Photic Stimulation , Retina/physiology , Retina/radiation effects , Urodela/physiology , Action Potentials/physiology , Action Potentials/radiation effects , Animals , Light , Linear Models , Nonlinear Dynamics , Retinal Ganglion Cells/physiology , Retinal Ganglion Cells/radiation effects , Retinal Neurons/physiology , Retinal Neurons/radiation effects , Statistics as Topic
17.
PLoS Comput Biol ; 10(1): e1003408, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24391485

ABSTRACT

Maximum entropy models are the least structured probability distributions that exactly reproduce a chosen set of statistics measured in an interacting network. Here we use this principle to construct probabilistic models which describe the correlated spiking activity of populations of up to 120 neurons in the salamander retina as it responds to natural movies. Already in groups as small as 10 neurons, interactions between spikes can no longer be regarded as small perturbations in an otherwise independent system; for 40 or more neurons pairwise interactions need to be supplemented by a global interaction that controls the distribution of synchrony in the population. Here we show that such "K-pairwise" models--being systematic extensions of the previously used pairwise Ising models--provide an excellent account of the data. We explore the properties of the neural vocabulary by: 1) estimating its entropy, which constrains the population's capacity to represent visual information; 2) classifying activity patterns into a small set of metastable collective modes; 3) showing that the neural codeword ensembles are extremely inhomogenous; 4) demonstrating that the state of individual neurons is highly predictable from the rest of the population, allowing the capacity for error correction.


Subject(s)
Retina/pathology , Sensory Receptor Cells/cytology , Urodela/physiology , Action Potentials/physiology , Animals , Computational Biology , Entropy , Fishes , Models, Neurological , Movement , Nerve Net/physiology , Probability
18.
PLoS One ; 8(10): e79163, 2013.
Article in English | MEDLINE | ID: mdl-24205373

ABSTRACT

The visual system continually adjusts its sensitivity to the statistical properties of the environment through an adaptation process that starts in the retina. Colour perception and processing is commonly thought to occur mainly in high visual areas, and indeed most evidence for chromatic colour contrast adaptation comes from cortical studies. We show that colour contrast adaptation starts in the retina where ganglion cells adjust their responses to the spectral properties of the environment. We demonstrate that the ganglion cells match their responses to red-blue stimulus combinations according to the relative contrast of each of the input channels by rotating their functional response properties in colour space. Using measurements of the chromatic statistics of natural environments, we show that the retina balances inputs from the two (red and blue) stimulated colour channels, as would be expected from theoretical optimal behaviour. Our results suggest that colour is encoded in the retina based on the efficient processing of spectral information that matches spectral combinations in natural scenes on the colour processing level.


Subject(s)
Color Vision/physiology , Retina/physiology , Urodela/physiology , Animals , Contrast Sensitivity , Models, Biological , Photic Stimulation , Retinal Ganglion Cells/physiology
19.
Elife ; 2: e00759, 2013 Sep 03.
Article in English | MEDLINE | ID: mdl-24015357

ABSTRACT

Social behavior in mammals is often studied in pairs under artificial conditions, yet groups may rely on more complicated social structures. Here, we use a novel system for tracking multiple animals in a rich environment to characterize the nature of group behavior and interactions, and show strongly correlated group behavior in mice. We have found that the minimal models that rely only on individual traits and pairwise correlations between animals are not enough to capture group behavior, but that models that include third-order interactions give a very accurate description of the group. These models allow us to infer social interaction maps for individual groups. Using this approach, we show that environmental complexity during adolescence affects the collective group behavior of adult mice, in particular altering the role of high-order structure. Our results provide new experimental and mathematical frameworks for studying group behavior and social interactions. DOI:http://dx.doi.org/10.7554/eLife.00759.001.


Subject(s)
Social Behavior , Animals , Mice , Ultraviolet Rays
20.
PLoS Comput Biol ; 9(3): e1002922, 2013.
Article in English | MEDLINE | ID: mdl-23516339

ABSTRACT

Neural populations encode information about their stimulus in a collective fashion, by joint activity patterns of spiking and silence. A full account of this mapping from stimulus to neural activity is given by the conditional probability distribution over neural codewords given the sensory input. For large populations, direct sampling of these distributions is impossible, and so we must rely on constructing appropriate models. We show here that in a population of 100 retinal ganglion cells in the salamander retina responding to temporal white-noise stimuli, dependencies between cells play an important encoding role. We introduce the stimulus-dependent maximum entropy (SDME) model-a minimal extension of the canonical linear-nonlinear model of a single neuron, to a pairwise-coupled neural population. We find that the SDME model gives a more accurate account of single cell responses and in particular significantly outperforms uncoupled models in reproducing the distributions of population codewords emitted in response to a stimulus. We show how the SDME model, in conjunction with static maximum entropy models of population vocabulary, can be used to estimate information-theoretic quantities like average surprise and information transmission in a neural population.


Subject(s)
Models, Neurological , Retinal Ganglion Cells/physiology , Action Potentials , Ambystoma , Animals , Cluster Analysis , Computational Biology , Electrophysiology , Entropy , Linear Models , Nonlinear Dynamics , Photic Stimulation , Retina/cytology , Retina/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...