Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Negl Trop Dis ; 14(6): e0008433, 2020 06.
Article in English | MEDLINE | ID: mdl-32574163

ABSTRACT

Mosquitoes are of major importance to human and animal health due to their ability to transmit various pathogens. In Europe the role of mosquitoes in public health has increased with the introduction of alien Aedes mosquitoes such as the Asian tiger mosquito, Aedes albopictus; the Asian bush mosquito, Ae. japonicus; and Ae. koreicus. In Austria, Ae. japonicus has established populations in various regions of the country. Aedes albopictus is not known to overwinter in Austria, although isolated findings of eggs and adult female mosquitoes have been previously reported, especially in Tyrol. Aedes koreicus had not so far been found in Austria. Within the framework of an alien mosquito surveillance program in the Austrian province of Tyrol, ovitraps were set up weekly from May to October, 2018, at 67 sites- 17 in East Tyrol and 50 in North Tyrol. Sampling was performed at highways and at urban and rural areas. DNA obtained from mosquito eggs was barcoded using molecular techniques and sequences were analysed to species level. Eggs of alien Aedes species were found at 18 out of 67 sites (27%). Both Ae. albopictus and Ae. japonicus were documented at highways and urban areas in both East and North Tyrol. Aedes koreicus was found in East Tyrol. During this mosquito surveillance program, eggs of Ae. albopictus, Ae. japonicus, and Ae. koreicus were documented in the Austrian province of Tyrol. These findings not only show highways to be points of entry, but also point to possible establishment processes of Ae. japonicus in Tyrol. Moreover, Ae. koreicus was documented in Austria for the first time.


Subject(s)
Culicidae/classification , Culicidae/physiology , Environmental Monitoring , Aedes/classification , Aedes/genetics , Aedes/physiology , Animals , Austria , Culicidae/genetics , Eggs , Female , Mosquito Vectors/genetics , Public Health , Rural Population , Urban Population
2.
Vet Parasitol Reg Stud Reports ; 19: 100370, 2020 01.
Article in English | MEDLINE | ID: mdl-32057397

ABSTRACT

The domestic yak Bos mutus grunniens is an important livestock animal in parts of Asia, especially of the Himalayan region, where people rely on it for meat, wool, milk and labour. In its countries of origin, the yak is commonly infected with the ascarid Toxocara vitulorum. This parasite mainly infects cattle (Bos taurus) and domestic buffalo (Bubalus bubalus) and is most commonly found in sub-tropical regions, but has been occasionally reported in more temperate climates, including several Central European countries. Here we describe a fatal case of toxocarosis in a yak calf in Tyrol in May 2018, which is the first report of these parasites in yaks in Austria. A moribund calf had to be euthanized and gross pathology showed masses of cream-coloured, up to 25 cm long nematodes filling the whole of the small intestine, as well as parts of the colon. PCR of parts of the mitochondrial cytochrome c oxidase subunit I gene was performed and sequence analysis confirmed the helminths as Toxocara vitulorum.


Subject(s)
Cattle Diseases/diagnosis , Toxocara/isolation & purification , Toxocariasis/diagnosis , Animals , Austria , Cattle , Cattle Diseases/parasitology , Fatal Outcome , Male , Toxocariasis/parasitology
3.
Parasitol Res ; 119(2): 737-740, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31834491

ABSTRACT

In the framework of a mosquito-monitoring program conducted from 2014 to 2018, non-culicid dipteran bycatch was identified to species-level with a focus on Diptera of medical and veterinary importance as part of a biodiversity initiative and barcoding project ("Austrian Barcode of Life"). Two species hitherto not known from Austria, the regularly sampled synanthropic moth fly Clogmia albipunctata (Psychodidae) and a single specimen of the louse fly Ornithoica turdi (Hippoboscidae), were collected in Vienna and Lower Austria. We confirmed identification results using a barcoding approach and provide the first reference sequence for O. turdi.


Subject(s)
Diptera/physiology , Psychodidae/physiology , Animals , Austria , Biodiversity , DNA Barcoding, Taxonomic , Diptera/genetics , Electron Transport Complex IV/genetics , Psychodidae/genetics
4.
Parasitol Res ; 118(5): 1633-1638, 2019 May.
Article in English | MEDLINE | ID: mdl-30877440

ABSTRACT

Systematic, continuous mosquito surveillance is considered the most reliable tool to predict the spread and establishment of alien mosquito species such as the Asian tiger mosquito (Aedes albopictus), Japanese bush mosquito (Aedes japonicus), and the transmission risk of mosquito-borne arboviruses to humans. Only single individuals of Ae. albopictus have been found in Austria so far. However, it is likely that the species will be able to establish populations in the future due to global trade and traffic as well as increasing temperatures in the course of global climate change. In summer 2017, a project surveilling the oviposition of newly introduced Aedes mosquitoes, using ovitraps, was set up by means of citizen scientists and researchers and was performed in six federal provinces of Austria-Tyrol, Carinthia, Vienna, Lower Austria, Styria, and Burgenland. Eggs of Ae. albopictus were identified in Tyrol during the months August and September, while Ae. japonicus was found in Lower Austria, Styria, and Burgenland. In Vienna and Carinthia, all ovitraps were negative for Aedes eggs; however, Ae. japonicus was found for the first time in Vienna in July 2017 during routine sampling of adult mosquitoes. With this project, we demonstrated the benefits of citizen scientists for ovitrap-based mosquito surveillance. The finding of Ae. albopictus eggs in Northern Tyrol is not yet a proof of the establishment of a self-sustaining population, although it indicates the ongoing introduction of this species along main traffic routes from Italy, where this mosquito is well established. The risk of establishment of the tiger mosquito in the Lower Inn Valley is therefore a given and informing the public about preventive measures to hinder and delay this development is highly recommended.


Subject(s)
Aedes/anatomy & histology , Aedes/classification , Introduced Species , Oviposition/physiology , Aedes/virology , Animals , Arbovirus Infections/transmission , Arboviruses/growth & development , Austria , Climate Change , Environment , Female , Humans , Italy , Seasons , Temperature
5.
Parasitol Res ; 118(4): 1261-1269, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30783859

ABSTRACT

Avian malaria (Plasmodium spp.) and kinetoplastid (Trypanosoma spp.) parasites are common vector-borne pathogens in birds worldwide; however, knowledge about vector competence of different mosquito species is currently lacking. For a pilot project examining vector competence of mosquitoes of the Culex pipiens complex and Culex torrentium for protozoan parasites in the city of Vienna, 316 individual mosquitoes were sampled in the months June-August 2017 around the campus of the Veterinary University of Vienna. Since vector competence for avian Plasmodium can only be ascertained by finding infectious sporozoites in mosquito salivary glands, special emphasis was on examining these, or at least insect thoraxes, which contain the salivary glands. After species identification, the mosquitoes were processed in three different ways to determine the best method of visually detecting protozoan parasites in salivary glands: (1) microscopic examination of individual, fixed and Giemsa-stained salivary glands, (2) microscopic examination of stained sections of individually fixed and embedded mosquito thoraxes and (3) stained sections of individual whole insects. Material from all three groups was also subjected to PCR to detect avian haemosporidian and trypanosomatid parasite DNA. PCR was performed on all 316 collected mosquitoes, with 37 pools (n = 2-10) of 263 individuals and 53 single individuals in all together 90 PCR reactions. Avian Plasmodium was found in 18 (20%) and trypanosomatid parasites were found in 10 (11.1%) of the examined samples and pools yielded a higher proportion of positives than did individual samples. Six different species of protozoan parasites were identified, namely Plasmodium vaughani SYAT05 which was the most common, P. elongatum GRW6, P. relictum SGS1, Trypanosoma avium, T. culicavium and Crithidia dedva. Seventy-seven mosquito salivary glands were dissected and stained with Giemsa solution. Of these, one (1.3%) featured sporozoites and one (1.3%) trypanosomatid parasites. While the trypanosomes were identified as T. avium, the avian Plasmodium species were present in a mixed infection with P. vaughani SYAT05 as the dominant species. In conclusion, mosquitoes of the Culex pipiens complex are very likely vectors of different avian Plasmodium and Trypanosoma species and PCR was the most successful and reliable method for parasite detection in mosquito samples, delivering higher rates and more accurate results. The visual detection of parasite stages in the salivary glands was more difficult and only a few specimens were detected using Giemsa stain and chromogenic in situ hybridization. For further studies on vector competence of different protozoan parasites in mosquitoes, the use of PCR-based methods would be preferable.


Subject(s)
Culex/parasitology , Malaria, Avian/transmission , Mosquito Vectors/parasitology , Plasmodium/isolation & purification , Salivary Glands/parasitology , Sporozoites/isolation & purification , Trypanosoma/isolation & purification , Animals , Birds/parasitology , DNA, Protozoan/analysis , Malaria, Avian/parasitology , Pilot Projects , Plasmodium/classification , Plasmodium/genetics , Polymerase Chain Reaction , Trypanosoma/classification , Trypanosoma/genetics
6.
Can J Infect Dis Med Microbiol ; 2018: 9754695, 2018.
Article in English | MEDLINE | ID: mdl-29736197

ABSTRACT

Information on mosquito-borne filarioid helminths in Austria is scarce, but recent discoveries of Dirofilaria repens indicate autochthonous distribution of this parasite in Eastern Austria. In the current xenomonitoring study, more than 48,000 mosquitoes were collected in Eastern Austria between 2013 and 2015, using different sampling techniques and storage conditions, and were analysed in pools with molecular tools for the presence of filarioid helminth DNA. Overall, DNA of D. repens, Setaria tundra, and two unknown filarioid helminths were documented in twenty mosquito pools within the mitochondrial cox1 gene (barcode region). These results indicate that S. tundra, with roe deer as definite hosts, is common in Eastern Austria, with most occurrences in floodplain mosquitoes (e.g., Aedes vexans). Moreover, DNA of D. repens was found in an Anopheles plumbeus mosquito close to the Slovakian border, indicating that D. repens is endemic in low prevalence in Eastern Austria. This study shows that xenomonitoring is an adequate tool to analyse the presence of filarioid helminths, but results are influenced by mosquito sampling techniques, storage conditions, and molecular protocols.

7.
PLoS One ; 13(4): e0196052, 2018.
Article in English | MEDLINE | ID: mdl-29672618

ABSTRACT

Trypanosomatid flagellates have not been studied in Austria in any detail. In this study, specific nested PCR, targeted on the ribosomal small subunit, was used to determine the occurrence and diversity of trypanosomatids in wild-caught mosquitoes sampled across Eastern Austria in the years 2014-2015. We collected a total of 29,975 mosquitoes of 19 species divided in 1680 pools. Of these, 298 (17.7%), representing 12 different mosquito species, were positive for trypanosomatid DNA. In total, seven trypanosomatid spp. were identified (three Trypanosoma, three Crithidia and one Herpetomonas species), with the highest parasite species diversity found in the mosquito host Coquillettidia richiardii. The most frequent parasite species belonged to the mammalian Trypanosoma theileri/cervi species complex (found in 105 pools; 6.3%). The avian species T. culicavium (found in 69 pools; 4.1%) was only detected in mosquitoes of the genus Culex, which corresponds to their preference for avian hosts. Monoxenous trypanosomatids of the genus Crithidia and Herpetomonas were found in 20 (1.3%) mosquito pools. One third (n = 98) of the trypanosomatid positive mosquito pools carried more than one parasite species. This is the first large scale study of trypanosomatid parasites in Austrian mosquitoes and our results are valuable in providing an overview of the diversity of these parasites in Austria.


Subject(s)
Culicidae/parasitology , Trypanosoma/classification , Animals , Austria , Biodiversity , DNA, Protozoan , DNA, Ribosomal , Phylogeny , Sequence Analysis, DNA , Trypanosoma/genetics , Trypanosomiasis/parasitology , Trypanosomiasis/transmission
8.
Malar J ; 16(1): 389, 2017 09 29.
Article in English | MEDLINE | ID: mdl-28962620

ABSTRACT

BACKGROUND: Insect vectors, namely mosquitoes (Diptera: Culicidae), are compulsory for malaria parasites (Plasmodium spp.) to complete their life cycle. Despite this, little is known about vector competence of different mosquito species for the transmission of avian malaria parasites. METHODS: In this study, nested PCR was used to determine Plasmodium spp. occurrence in pools of whole individuals, as well as the diversity of mitochondrial cytochrome b gene sequences in wild-caught mosquitoes sampled across Eastern Austria in 2013-2015. RESULTS: A total of 45,749 mosquitoes in 2628 pools were collected, of which 169 pools (6.43%) comprising 9 mosquito species were positive for avian Plasmodium, with the majority of positives in mosquitoes of Culex pipiens s.l./Culex torrentium. Six different avian Plasmodium lineages were found, the most common were Plasmodium vaughani SYAT05, Plasmodium sp. Linn1 and Plasmodium relictum SGS1. In 2014, mosquitoes of the Culex pipiens complex were genetically identified and Culex pipiens f. pipiens presented with the highest number of avian Plasmodium positives (n = 37; 16.74%). Despite this, the minimum infection rate (MIR) was highest in Culex torrentium (5.36%) and Culex pipiens f. pipiens/f. molestus hybrids (5.26%). During 2014 and 2015, seasonal and annual changes in Plasmodium lineage distribution were also observed. In both years P. vaughani SYAT05 dominated at the beginning of the sampling period to be replaced later in the year by P. relictum SGS1 (2014) and Plasmodium sp. Linn1 (2015). CONCLUSIONS: This is the first large-scale study of avian Plasmodium parasites in Austrian mosquitoes. These results are of special interest, because molecular identification of the taxa of the Cx. pipiens complex and Cx. torrentium enabled the determination of Plasmodium prevalence in the different mosquito taxa and hybrids of this complex. Since pools of whole insects were used, it is not possible to assert any vector competence in any of the examined mosquitoes, but the results are nonetheless valuable in providing an overview of avian Plasmodium species and lineages present in Austria.


Subject(s)
Culex/parasitology , Insect Vectors/parasitology , Malaria, Avian/epidemiology , Plasmodium/isolation & purification , Animals , Austria/epidemiology , Malaria, Avian/parasitology , Plasmodium/classification , Plasmodium/genetics , Sequence Analysis, DNA
9.
Parasitol Res ; 110(2): 913-23, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21842389

ABSTRACT

Avian malaria is caused by intracellular mosquito-transmitted protist parasites in the order Haemosporida, genus Plasmodium. Although Plasmodium species have been diagnosed as causing death in several threatened species in New Zealand, little is known about their ecology and epidemiology. In this study, we examined the presence, microscopic characterization and sequence homology of Plasmodium spp. isolates collected from a small number of New Zealand introduced, native and endemic bird species. We identified 14 Plasmodium spp. isolates from 90 blood or tissue samples. The host range included four species of passerines (two endemic, one native, one introduced), one species of endemic pigeon and two species of endemic kiwi. The isolates were associated into at least four distinct clusters including Plasmodium (Huffia) elongatum, a subgroup of Plasmodium elongatum, Plasmodium relictum and Plasmodium (Noyvella) spp. The infected birds presented a low level of peripheral parasitemia consistent with chronic infection (11/15 blood smears examined). In addition, we report death due to overwhelming parasitemia in a blackbird, a great spotted kiwi and a hihi. These deaths were attributed to infections with either Plasmodium spp. lineage LINN1 or P. relictum lineage GRW4. To the authors' knowledge, this is the first published report of Plasmodium spp. infection in great spotted and brown kiwi, kereru and kokako. Currently, we are only able to speculate on the origin of these 14 isolates but consideration must be made as to the impact they may have on threatened endemic species, particularly due to the examples of mortality.


Subject(s)
Bird Diseases/parasitology , Malaria/veterinary , Plasmodium/isolation & purification , Animals , Birds , Blood/parasitology , Chronic Disease , Cluster Analysis , Cytochromes b/genetics , DNA, Protozoan/chemistry , DNA, Protozoan/genetics , Malaria/parasitology , Molecular Sequence Data , New Zealand , Parasitemia/parasitology , Parasitemia/veterinary , Phylogeny , Plasmodium/classification , Plasmodium/genetics , Protozoan Proteins/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...