Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-34645615

ABSTRACT

INTRODUCTION: Although associations of total plasma N-glycome (TPNG) with type 2 diabetes have been reported, little is known on the role of TPNG in type 2 diabetes complications, a major cause of type 2 diabetes-related morbidity and mortality. Here, we assessed TPNG in relation to type 2 diabetes complications in subsamples of two Dutch cohorts using mass spectrometry (n=1815 in DiaGene and n=1518 in Hoorn Diabetes Care System). RESEARCH DESIGN AND METHODS: Blood plasma samples and technical replicates were pipetted into 96-well plates in a randomized manner. Peptide:N-glycosidase F (PNGase F) was used to release N-glycans, whereafter sialic acids were derivatized for stabilization and linkage differentiation. After total area normalization, 68 individual glycan compositions were quantified in total and were used to calculate 45 derived traits which reflect structural features of glycosylation. Associations of glycan features with prevalent and incident microvascular or macrovascular complications were tested in logistic and Cox regression in both independent cohorts and the results were meta-analyzed. RESULTS: Our results demonstrated similarities between incident and prevalent complications. The strongest association for prevalent cardiovascular disease was a high level of bisection on a group of diantennary glycans (A2FS0B; OR=1.38, p=1.34×10-11), while for prevalent nephropathy the increase in 2,6-sialylation on triantennary glycans was most pronounced (A3E; OR=1.28, p=9.70×10-6). Several other TPNG features, including fucosylation, galactosylation, and sialylation, firmly demonstrated associations with prevalent and incident complications of type 2 diabetes. CONCLUSIONS: These findings may provide a glance on how TPNG patterns change before complications emerge, paving the way for future studies on prediction biomarkers and potentially disease mechanisms.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Retinal Diseases , Blood Proteins , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Diabetes Mellitus, Type 2/complications , Glycosylation , Humans , Plasma
2.
Article in English | MEDLINE | ID: mdl-32616483

ABSTRACT

INTRODUCTION: Recent studies revealed N-glycosylation signatures of type 2 diabetes, inflammation and cardiovascular risk factors. Most people with diabetes use medication to reduce cardiovascular risk. The association of these medications with the plasma N-glycome is largely unknown. We investigated the associations of metformin, statin, ACE inhibitor/angiotensin II receptor blocker (ARB), sulfonylurea (SU) derivatives and insulin use with the total plasma N-glycome in type 2 diabetes. RESEARCH DESIGN AND METHODS: After enzymatic release from glycoproteins, N-glycans were measured by matrix-assisted laser desorption/ionization mass spectrometry in the DiaGene (n=1815) and Hoorn Diabetes Care System (n=1518) cohorts. Multiple linear regression was used to investigate associations with medication, adjusted for clinical characteristics. Results were meta-analyzed and corrected for multiple comparisons. RESULTS: Metformin and statins were associated with decreased fucosylation and increased galactosylation and sialylation in glycans unrelated to immunoglobulin G. Bisection was increased within diantennary fucosylated non-sialylated glycans, but decreased within diantennary fucosylated sialylated glycans. Only few glycans were associated with ACE inhibitor/ARBs, while none associated with insulin and SU derivative use. CONCLUSIONS: We conclude that metformin and statins associate with a total plasma N-glycome signature in type 2 diabetes. Further studies are needed to determine the causality of these relations, and future N-glycomic research should consider medication a potential confounder.


Subject(s)
Diabetes Mellitus, Type 2 , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Metformin , Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Blood Proteins , Diabetes Mellitus, Type 2/drug therapy , Glycosylation , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Metformin/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...