Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Chem Neurosci ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38747710

ABSTRACT

Xylazine (also known as "tranq") is a potent nonopioid veterinary sedative that has recently experienced a surge in use as a drug adulterant, most often combined with illicitly manufactured fentanyl. This combination may heighten the risk of fatal overdose. Xylazine has no known antidote approved for use in humans, and age-adjusted overdose deaths involving xylazine were 35 times higher in 2021 than 2018. In April 2023, the Biden Administration declared xylazine-laced fentanyl an emerging drug threat in the United States. In 2022, the Drug Enforcement Agency (DEA) reported nearly a quarter of seized fentanyl powder contained xylazine. This dramatic increase in prevalence has solidified the status of xylazine as an emerging drug of abuse and an evolving threat to public health. The following narrative review outlines the synthesis, pharmacokinetics, pharmacodynamics, and adverse effects of xylazine, as well as the role it may play in the ongoing opioid epidemic.

2.
MethodsX ; 12: 102693, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38633417

ABSTRACT

Dust is a sink for many semi-volatile compounds including flame retardants of the organophosphate ester (OPE) and brominated flame-retardant (BFR) classes. Given the large amount of time that we spend indoors, our exposure to these compounds via dust is of significant interest. Here, we present a novel microextraction approach to determine quantitative levels of selected OPEs and BFRs sampled from residential air filters from HVAC systems using a small volume of solvent. Dust samples (25 mg) is extracted with 1 mL of hexane/acetone (50/50, v/v). Upon solvent extraction of these HVAC dust samples, the analytes (TCPP, TDCPP, TPHP, T24DtBPP, TBBPA, and TriBBPA) were quantified via gas chromatography-mass spectrometry (GC/MS) or liquid chromatography-mass spectrometry (LC/MS). The methods for extracting these compounds from HVAC dust samples are detailed here with extensive method validation data to demonstrate accuracy and precision of these methods. •Dust is a sink for many semi-volatile compounds, including novel or emerging indoor pollutants like the organophosphate ester flame retardant T24DtBPP.•Here, a small amount of dust (25 mg) is extracted with a small volume of solvent (1 mL hexane and acetone) prior to analysis via chromatographic separation and mass spectrometric detection.

3.
Int J Mol Sci ; 25(3)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38339082

ABSTRACT

Serine proteases are members of a large family of hydrolytic enzymes in which a particular serine residue in the active site performs an essential role as a nucleophile, which is required for their proteolytic cleavage function. The array of functions performed by serine proteases is vast and includes, among others, the following: (i) the ability to fight infections; (ii) the activation of blood coagulation or blood clot lysis systems; (iii) the activation of digestive enzymes; and (iv) reproduction. Serine protease activity is highly regulated by multiple families of protease inhibitors, known collectively as the SERine Protease INhibitor (SERPIN). The serpins use a conformational change mechanism to inhibit proteases in an irreversible way. The unusual conformational change required for serpin function provides an elegant opportunity for allosteric regulation by the binding of cofactors, of which the most well-studied is heparin. The goal of this review is to discuss some of the clinically relevant serine protease-serpin interactions that may be enhanced by heparin or other negatively charged polysaccharides. The paired serine protease-serpin in the framework of heparin that we review includes the following: thrombin-antithrombin III, plasmin-anti-plasmin, C1 esterase/kallikrein-C1 esterase inhibitor, and furin/TMPRSS2 (serine protease Transmembrane Protease 2)-alpha-1-antitrypsin, with the latter in the context of COVID-19 and prostate cancer.


Subject(s)
Serpins , Serpins/metabolism , Heparin/chemistry , Serine Proteases , Serine Proteinase Inhibitors/metabolism , Anticoagulants , Thrombin/metabolism
4.
ACS Chem Neurosci ; 14(23): 4064-4075, 2023 12 06.
Article in English | MEDLINE | ID: mdl-37966854

ABSTRACT

The discovery of monoamine oxidase inhibitors (MAOIs) in the 1950s marked a significant breakthrough in medicine, creating a powerful new category of drug: the antidepressant. In the years and decades that followed, MAOIs have been used in the treatment of several pathologies including Parkinson's disease, Alzheimer's disease, and various cancers and as anti-inflammatory agents. Despite once enjoying widespread use, MAOIs have dwindled in popularity due to side effects, food-drug interactions, and the introduction of other antidepressant drug classes such as tricyclic antidepressants (TCAs) and selective serotonin reuptake inhibitors (SSRIs). The recently published prescriber's guide for the use of MAOIs in treating depression has kindled a resurgence of their use in the clinical space. It is therefore timely to review key aspects of the four "classic" MAOIs: high-dose selegiline, isocarboxazid, phenelzine, and tranylcypromine. This review discusses their chemical synthesis, metabolism, pharmacology, adverse effects, and the history and importance of these drugs within the broader field of chemical neuroscience.


Subject(s)
Phenelzine , Tranylcypromine , Tranylcypromine/therapeutic use , Phenelzine/pharmacology , Phenelzine/therapeutic use , Isocarboxazid , Selegiline/pharmacology , Selegiline/therapeutic use , Antidepressive Agents/therapeutic use , Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase Inhibitors/therapeutic use
5.
Molecules ; 27(15)2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35897857

ABSTRACT

Pyrazines and pyridazines fused to 1,2,3-triazoles comprise a set of heterocycles obtained through a variety of synthetic routes. Two typical modes of constructing these heterocyclic ring systems are cyclizing a heterocyclic diamine with a nitrite or reacting hydrazine hydrate with dicarbonyl 1,2,3-triazoles. Several unique methods are known, particularly for the synthesis of 1,2,3-triazolo[1,5-a]pyrazines and their benzo-fused quinoxaline and quinoxalinone-containing analogs. Recent applications detail the use of these heterocycles in medicinal chemistry (c-Met inhibition or GABAA modulating activity) as fluorescent probes and as structural units of polymers.


Subject(s)
Pyridazines , Pyrazines , Pyridazines/chemistry , Quinoxalines , Triazoles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...