Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res ; 84(10): 1597-1612, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38588411

ABSTRACT

Resistance to immune checkpoint blockade (ICB) therapy represents a formidable clinical challenge limiting the efficacy of immunotherapy. In particular, prostate cancer poses a challenge for ICB therapy due to its immunosuppressive features. A ketogenic diet (KD) has been reported to enhance response to ICB therapy in some other cancer models. However, adverse effects associated with continuous KD were also observed, demanding better mechanistic understanding and optimized regimens for using KD as an immunotherapy sensitizer. In this study, we established a series of ICB-resistant prostate cancer cell lines and developed a highly effective strategy of combining anti-PD1 and anti-CTLA4 antibodies with histone deacetylase inhibitor (HDACi) vorinostat, a cyclic KD (CKD), or dietary supplementation of the ketone body ß-hydroxybutyrate (BHB), which is an endogenous HDACi. CKD and BHB supplementation each delayed prostate cancer tumor growth as monotherapy, and both BHB and adaptive immunity were required for the antitumor activity of CKD. Single-cell transcriptomic and proteomic profiling revealed that HDACi and ketogenesis enhanced ICB efficacy through both cancer cell-intrinsic mechanisms, including upregulation of MHC class I molecules, and -extrinsic mechanisms, such as CD8+ T-cell chemoattraction, M1/M2 macrophage rebalancing, monocyte differentiation toward antigen-presenting cells, and diminished neutrophil infiltration. Overall, these findings illuminate a potential clinical path of using HDACi and optimized KD regimens to enhance ICB therapy for prostate cancer. SIGNIFICANCE: Optimized cyclic ketogenic diet and 1,3-butanediol supplementation regimens enhance the efficacy of immune checkpoint blockade in prostate cancer through epigenetic and immune modulations, providing dietary interventions to sensitize tumors to immunotherapy.


Subject(s)
Diet, Ketogenic , Drug Resistance, Neoplasm , Epigenesis, Genetic , Immune Checkpoint Inhibitors , Prostatic Neoplasms , Male , Diet, Ketogenic/methods , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/immunology , Prostatic Neoplasms/diet therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Mice , Epigenesis, Genetic/drug effects , Animals , Cell Line, Tumor , Vorinostat/pharmacology , Vorinostat/therapeutic use , Vorinostat/administration & dosage , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , 3-Hydroxybutyric Acid , Xenograft Model Antitumor Assays , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Receptor/antagonists & inhibitors
2.
Cell Rep ; 43(4): 113984, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38520689

ABSTRACT

Targeting programmed cell death protein 1 (PD-1) is an important component of many immune checkpoint blockade (ICB) therapeutic approaches. However, ICB is not an efficacious strategy in a variety of cancer types, in part due to immunosuppressive metabolites in the tumor microenvironment. Here, we find that αPD-1-resistant cancer cells produce abundant itaconate (ITA) due to enhanced levels of aconitate decarboxylase (Acod1). Acod1 has an important role in the resistance to αPD-1, as decreasing Acod1 levels in αPD-1-resistant cancer cells can sensitize tumors to αPD-1 therapy. Mechanistically, cancer cells with high Acod1 inhibit the proliferation of naive CD8+ T cells through the secretion of inhibitory factors. Surprisingly, inhibition of CD8+ T cell proliferation is not dependent on the secretion of ITA but is instead a consequence of the release of small inhibitory peptides. Our study suggests that strategies to counter the activity of Acod1 in cancer cells may sensitize tumors to ICB therapy.


Subject(s)
Carboxy-Lyases , Humans , Animals , Cell Line, Tumor , Carboxy-Lyases/metabolism , Mice , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Peptides/metabolism , Peptides/pharmacology , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/metabolism , Neoplasms/drug therapy , Cell Proliferation/drug effects , Immune Evasion , Mice, Inbred C57BL
3.
bioRxiv ; 2023 Sep 17.
Article in English | MEDLINE | ID: mdl-37745450

ABSTRACT

Targeting PD-1 is an important component of many immune checkpoint blockade (ICB) therapeutic approaches. However, ICB is not an efficacious strategy in a variety of cancer types, in part due to immunosuppressive metabolites in the tumor microenvironment (TME). Here, we find that αPD-1-resistant cancer cells produce abundant itaconate (ITA) due to enhanced levels of aconitate decarboxylase (Acod1). Acod1 has an important role in the resistance to αPD-1, as decreasing Acod1 levels in αPD-1 resistant cancer cells can sensitize tumors to αPD-1 therapy. Mechanistically, cancer cells with high Acod1 inhibit the proliferation of naïve CD8+ T cells through the secretion of inhibitory factors. Surprisingly, inhibition of CD8+ T cell proliferation is not dependent on secretion of ITA, but is instead a consequence of the release of small inhibitory peptides. Our study suggests that strategies to counter the activity of Acod1 in cancer cells may sensitize tumors to ICB therapy.

4.
Article in English | MEDLINE | ID: mdl-37521407

ABSTRACT

The induction of apoptosis, a programmed cell death pathway governed by activation of caspases, can result in fundamental changes in metabolism that either facilitate or restrict the execution of cell death. In addition, metabolic adaptations can significantly impact whether cells in fact initiate the apoptotic cascade. In this mini-review, we will highlight and discuss the interconnectedness of apoptotic regulation and metabolic alterations, two biological outcomes whose regulators are intertwined.

5.
Antioxid Redox Signal ; 34(7): 517-530, 2021 03 01.
Article in English | MEDLINE | ID: mdl-32079408

ABSTRACT

Significance: Mitochondria represent a major source of intracellular reactive oxygen species (ROS) generation. This is often a consequence of oxidative phosphorylation, which can produce ROS as a result of leakage from the electron transport chain. In addition, quality control mechanisms exist to protect cells from cytotoxic ROS production. One such mechanism is selective autophagic degradation of ROS-producing mitochondria, termed mitophagy, that ultimately results in elimination of mitochondria in the lysosome. Recent Advances: However, while the relationship between mitophagy and ROS production is clearly interwoven, it is yet to be fully untangled. In some circumstances, mitochondrial ROS (mtROS) are elevated as a consequence of mitophagy induction. Critical Issues: In this review, we discuss mtROS generation and their detrimental effects on cellular viability. In addition, we consider the cellular defense mechanisms that the eukaryotic cell uses to abrogate superfluous oxidative stress. In particular, we delve into the prominent mechanisms governing mitophagy induction that bear on oxidative stress. Future Directions: Finally, we examine the pathological conditions associated with defective mitophagy, where additional research may help to facilitate understanding.


Subject(s)
Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Animals , Humans , Mitophagy
SELECTION OF CITATIONS
SEARCH DETAIL
...