Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Allergy Clin Immunol ; 149(1): 113-124.e7, 2022 01.
Article in English | MEDLINE | ID: mdl-34146578

ABSTRACT

BACKGROUND: Many patients with severe asthma (SA) fail to respond to type 2 inflammation-targeted therapies. We previously identified a cohort of subjects with SA expressing type 1 inflammation manifesting with IFN-γ expression and variable type 2 responses. OBJECTIVE: We investigated the role of the chemotactic receptors C-X-C chemokine receptor 3 (CXCR3) and C-C chemokine receptor 5 (CCR5) in establishing type 1 inflammation in SA. METHODS: Bronchoalveolar lavage microarray data from the Severe Asthma Research Program I/II were analyzed for pathway expression and paired with clinical parameters. Wild-type, Cxcr3-/-, and Ccr5-/- mice were exposed to a type 1-high SA model with analysis of whole lung gene expression and histology. Wild-type and Cxcr3-/- mice were treated with a US Food and Drug Administration-approved CCR5 inhibitor (maraviroc) with assessment of airway resistance, inflammatory cell recruitment by flow cytometry, whole lung gene expression, and histology. RESULTS: A cohort of subjects with increased IFN-γ expression showed higher asthma severity. IFN-γ expression was correlated with CXCR3 and CCR5 expression, but in Cxcr3-/- and Ccr5-/- mice type 1 inflammation was preserved in a murine SA model, most likely owing to compensation by the other pathway. Incorporation of maraviroc into the experimental model blunted airway hyperreactivity despite only mild effects on lung inflammation. CONCLUSIONS: IFNG expression in asthmatic airways was strongly correlated with expression of both the chemokine receptors CXCR3 and CCR5. Although these pathways provide redundancy for establishing type 1 lung inflammation, inhibition of the CCL5/CCR5 pathway with maraviroc provided unique benefits in reducing airway hyperreactivity. Targeting this pathway may be a novel approach for improving lung function in individuals with type 1-high asthma.


Subject(s)
Asthma/immunology , Receptors, CCR5/immunology , Receptors, CXCR3/immunology , Adult , Airway Resistance , Animals , Asthma/drug therapy , Asthma/physiopathology , Bronchi/immunology , Bronchoalveolar Lavage Fluid/immunology , CCR5 Receptor Antagonists/therapeutic use , Female , Humans , Inflammation/immunology , Inflammation/physiopathology , Interferon-gamma/immunology , Male , Maraviroc/therapeutic use , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Receptors, CCR5/genetics , Receptors, CXCR3/genetics , Respiratory Mucosa/immunology , Severity of Illness Index , Young Adult
2.
Cell Rep ; 35(2): 108974, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33852838

ABSTRACT

Clinical definitions of asthma fail to capture the heterogeneity of immune dysfunction in severe, treatment-refractory disease. Applying mass cytometry and machine learning to bronchoalveolar lavage (BAL) cells, we find that corticosteroid-resistant asthma patients cluster largely into two groups: one enriched in interleukin (IL)-4+ innate immune cells and another dominated by interferon (IFN)-γ+ T cells, including tissue-resident memory cells. In contrast, BAL cells of a healthier population are enriched in IL-10+ macrophages. To better understand cellular mediators of severe asthma, we developed the Immune Cell Linkage through Exploratory Matrices (ICLite) algorithm to perform deconvolution of bulk RNA sequencing of mixed-cell populations. Signatures of mitosis and IL-7 signaling in CD206-FcεRI+CD127+IL-4+ innate cells in one patient group, contrasting with adaptive immune response in T cells in the other, are preserved across technologies. Transcriptional signatures uncovered by ICLite identify T-cell-high and T-cell-poor severe asthma patients in an independent cohort, suggesting broad applicability of our findings.


Subject(s)
Asthma/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Machine Learning , Macrophages/immunology , Adaptive Immunity , Adrenal Cortex Hormones/therapeutic use , Anti-Asthmatic Agents/therapeutic use , Asthma/drug therapy , Asthma/genetics , Asthma/pathology , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/pathology , Case-Control Studies , Gene Expression Profiling , Gene Expression Regulation , Humans , Immunity, Innate , Immunologic Memory , Interferon-gamma/genetics , Interferon-gamma/immunology , Interleukin-10/genetics , Interleukin-10/immunology , Interleukin-7/genetics , Interleukin-7/immunology , Macrophages/pathology , Proteomics/methods , Receptors, IgE/genetics , Receptors, IgE/immunology , Severity of Illness Index , Signal Transduction
3.
JCI Insight ; 2(10)2017 May 18.
Article in English | MEDLINE | ID: mdl-28515358

ABSTRACT

Severe asthma (SA) is a significant problem both clinically and economically, given its poor response to corticosteroids (CS). We recently reported a complex type 1-dominated (IFN-γ-dominated) immune response in more than 50% of severe asthmatics despite high-dose CS treatment. Also, IFN-γ was found to be critical for increased airway hyperreactivity (AHR) in our model of SA. The transcription factor IRF5 expressed in M1 macrophages can induce a Th1/Th17 response in cocultured human T cells. Here we show markedly higher expression of IRF5 in bronchoalveolar lavage (BAL) cells of severe asthmatics as compared with that in cells from milder asthmatics or healthy controls. Using our SA mouse model, we demonstrate that lack of IRF5 in lymph node migratory DCs severely limits their ability to stimulate the generation of IFN-γ- and IL-17-producing CD4+ T cells and IRF5-/- mice subjected to the SA model displayed significantly lower IFN-γ and IL-17 responses, albeit showing a reciprocal increase in Th2 response. However, the absence of IRF5 rendered the mice responsive to CS with suppression of the heightened Th2 response. These data support the notion that IRF5 inhibition in combination with CS may be a viable approach to manage disease in a subset of severe asthmatics.

SELECTION OF CITATIONS
SEARCH DETAIL
...