Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Type of study
Language
Publication year range
2.
New Phytol ; 232(5): 2138-2151, 2021 12.
Article in English | MEDLINE | ID: mdl-33891715

ABSTRACT

Cable bacteria are sulfide-oxidising, filamentous bacteria that reduce toxic sulfide levels, suppress methane emissions and drive nutrient and carbon cycling in sediments. Recently, cable bacteria have been found associated with roots of aquatic plants and rice (Oryza sativa). However, the extent to which cable bacteria are associated with aquatic plants in nature remains unexplored. Using newly generated and public 16S rRNA gene sequence datasets combined with fluorescence in situ hybridisation, we investigated the distribution of cable bacteria around the roots of aquatic plants, encompassing seagrass (including seagrass seedlings), rice, freshwater and saltmarsh plants. Diverse cable bacteria were found associated with roots of 16 out of 28 plant species and at 36 out of 55 investigated sites, across four continents. Plant-associated cable bacteria were confirmed across a variety of ecosystems, including marine coastal environments, estuaries, freshwater streams, isolated pristine lakes and intensive agricultural systems. This pattern indicates that this plant-microbe relationship is globally widespread and neither obligate nor species specific. The occurrence of cable bacteria in plant rhizospheres may be of general importance to vegetation vitality, primary productivity, coastal restoration practices and greenhouse gas balance of rice fields and wetlands.


Subject(s)
Ecosystem , Oxygen , Bacteria/genetics , Geologic Sediments , Plant Roots , RNA, Ribosomal, 16S/genetics , Rhizosphere
3.
ISME J ; 14(11): 2901-2905, 2020 11.
Article in English | MEDLINE | ID: mdl-32929207

ABSTRACT

Seagrasses and lucinid bivalves inhabit highly reduced sediments with elevated sulphide concentrations. Lucinids house symbiotic bacteria (Ca. Thiodiazotropha) capable of oxidising sediment sulphide, and their presence in sediments has been proposed to promote seagrass growth by decreasing otherwise phytotoxic sulphide levels. However, vast and productive seagrass meadows are present in ecosystems where lucinids do not occur. Hence, we hypothesised that seagrasses themselves host these sulphur-oxidising Ca. Thiodiazotropha that could aid their survival when lucinids are absent. We analysed newly generated and publicly available 16S rRNA gene sequences from seagrass roots and sediments across 14 seagrass species and 10 countries and found that persistent and colonising seagrasses across the world harbour sulphur-oxidising Ca. Thiodiazotropha, regardless of the presence of lucinids. We used fluorescence in situ hybridisation to visually confirm the presence of Ca. Thiodiazotropha on roots of Halophila ovalis, a colonising seagrass species with wide geographical, water depth range, and sedimentary sulphide concentrations. We provide the first evidence that Ca. Thiodiazotropha are commonly present on seagrass roots, providing another mechanism for seagrasses to alleviate sulphide stress globally.


Subject(s)
Bivalvia , Hydrocharitaceae , Animals , Bacteria/genetics , Ecosystem , Geologic Sediments , RNA, Ribosomal, 16S/genetics
4.
Nat Commun ; 11(1): 1878, 2020 04 20.
Article in English | MEDLINE | ID: mdl-32313021

ABSTRACT

Methane is the second most important greenhouse gas after carbon dioxide and approximately 11% of the global anthropogenic methane emissions originate from rice fields. Sulfate amendment is a mitigation strategy to reduce methane emissions from rice fields because sulfate reducers and methanogens compete for the same substrates. Cable bacteria are filamentous bacteria known to increase sulfate levels via electrogenic sulfide oxidation. Here we show that one-time inoculation of rice-vegetated soil pots with cable bacteria increases the sulfate inventory 5-fold, which leads to the reduction of methane emissions by 93%, compared to control pots lacking cable bacteria. Promoting cable bacteria in rice fields by enrichment or sensible management may thus become a strategy to reduce anthropogenic methane emissions.


Subject(s)
Bacteria/metabolism , Methane/metabolism , Oryza/metabolism , Soil/chemistry , Agriculture , Carbon Cycle , Climate Change , Greenhouse Effect , Greenhouse Gases , Hydrogen-Ion Concentration , Methane/analysis , Microelectrodes , Soil Microbiology , Sulfates/metabolism
5.
J Vis Exp ; (154)2019 12 16.
Article in English | MEDLINE | ID: mdl-31885385

ABSTRACT

We describe a method to image dissolved oxygen (O2), in 2D at high spatial (< 50-100 µm) and temporal (< 10 s) resolution. The method employs O2 sensitive luminescent sensor foils (planar optodes) in combination with a specialized camera system for imaging luminescence lifetime in the frequency-domain. Planar optodes are prepared by dissolving the O2-sensitive indicator dye in a polymer and spreading the mixture on a solid support in a defined thickness via knife coating. After evaporation of the solvent, the planar optode is placed in close contact with the sample of interest - here demonstrated with the roots of the aquatic plant Littorella uniflora. The O2 concentration-dependent change in the luminescence lifetime of the indicator dye within the planar optode is imaged via the backside of the transparent carrier foil and aquarium wall using a special camera. This camera measures the luminescence lifetime (µs) via a shift in phase angle between a modulated excitation signal and emission signal. This method is superior to luminescence intensity imaging methods, as the signal is independent of the dye concentration or intensity of the excitation source, and solely relies on the luminescence decay time, which is an intrinsically referenced parameter. Consequently, an additional reference dye or other means of referencing are not needed. We demonstrate the use of the system for macroscopic O2 imaging of plant rhizospheres, but the camera system can also easily be coupled to a microscope.


Subject(s)
Imaging, Three-Dimensional , Luminescence , Oxygen/metabolism , Photography/methods , Calibration , Plantaginaceae/physiology , Rhizosphere
6.
FEMS Microbiol Ecol ; 95(6)2019 06 01.
Article in English | MEDLINE | ID: mdl-31054245

ABSTRACT

Cable bacteria belonging to the family Desulfobulbaceae couple sulfide oxidation and oxygen reduction by long-distance electron transfer over centimeter distances in marine and freshwater sediments. In such habitats, aquatic plants can release oxygen into the rhizosphere. Hence, the rhizosphere constitutes an ideal habitat for cable bacteria, which have been reported on seagrass roots recently. Here, we employ experimental approaches to investigate activity, abundance, and spatial orientation of cable bacteria next to the roots of the freshwater plant Littorella uniflora. Fluorescence in situ hybridization (FISH), in combination with oxygen-sensitive planar optodes, demonstrated that cable bacteria densities are enriched at the oxic-anoxic transition zone next to roots compared to the bulk sediment in the same depth. Scanning electron microscopy showed cable bacteria along root hairs. Electric potential measurements showed a lateral electric field over centimeters from the roots, indicating cable bacteria activity. In addition, FISH revealed that cable bacteria were present in the rhizosphere of Oryza sativa (rice), Lobelia cardinalis and Salicornia europaea. Hence, the interaction of cable bacteria with aquatic plants of different growth forms and habitats indicates that the plant root-cable bacteria interaction might be a common property of aquatic plant rhizospheres.


Subject(s)
Deltaproteobacteria/isolation & purification , Plant Roots/microbiology , Rhizosphere , Deltaproteobacteria/genetics , Electron Transport , Fresh Water , Geologic Sediments/microbiology , In Situ Hybridization, Fluorescence , Oxidation-Reduction
7.
Anal Chem ; 91(5): 3233-3238, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30758940

ABSTRACT

Luminescence lifetime based imaging is still the most reliable method for generating chemical images using chemical sensor technology. However, only few commercial systems are available that enable imaging lifetimes within the relevant nanosecond to microsecond range. In this technical note we compare the performance of an older time-domain (TD) based camera system with a frequency-domain (FD) based camera system regarding their measuring characteristics and applicability for O2 and pH imaging in environmental samples and with different indicator dye systems emitting in the visible and near-infrared part of the spectrum. We conclude that the newly introduced FD imaging system delivers comparable if not better results than its predecessor, now enabling robust and simple chemical imaging based on FD luminescence lifetime measurements.

SELECTION OF CITATIONS
SEARCH DETAIL