Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cell Reports ; 19(5): 618-628, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38579708

ABSTRACT

SOX2 is a transcription factor involved in the regulatory network maintaining the pluripotency of embryonic stem cells in culture as well as in early embryos. In addition, SOX2 plays a pivotal role in neural stem cell formation and neurogenesis. How SOX2 can serve both processes has remained elusive. Here, we identified a set of SOX2-dependent neural-associated enhancers required for neural lineage priming. They form a distinct subgroup (1,898) among 8,531 OCT4/SOX2/NANOG-bound enhancers characterized by enhanced SOX2 binding and chromatin accessibility. Activation of these enhancers is triggered by neural induction of wild-type cells or by default in Smad4-ablated cells resistant to mesoderm induction and is antagonized by mesodermal transcription factors via Sox2 repression. Our data provide mechanistic insight into the transition from the pluripotency state to the early neural fate and into the regulation of early neural versus mesodermal specification in embryonic stem cells and embryos.


Subject(s)
Enhancer Elements, Genetic , Mesoderm , Neural Stem Cells , SOXB1 Transcription Factors , SOXB1 Transcription Factors/metabolism , SOXB1 Transcription Factors/genetics , Animals , Mice , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Mesoderm/cytology , Mesoderm/metabolism , Neurogenesis , Gene Expression Regulation, Developmental , Octamer Transcription Factor-3/metabolism , Octamer Transcription Factor-3/genetics , Cell Differentiation/genetics , Nanog Homeobox Protein/metabolism , Nanog Homeobox Protein/genetics , Cell Lineage/genetics , Smad4 Protein/metabolism , Smad4 Protein/genetics , Embryonic Stem Cells/metabolism , Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/cytology , Chromatin/metabolism , Protein Binding
2.
Development ; 150(22)2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37882764

ABSTRACT

The node and notochord are important signaling centers organizing the dorso-ventral patterning of cells arising from neuro-mesodermal progenitors forming the embryonic body anlage. Owing to the scarcity of notochord progenitors and notochord cells, a comprehensive identification of regulatory elements driving notochord-specific gene expression has been lacking. Here, we have used ATAC-seq analysis of FACS-purified notochord cells from Theiler stage 12-13 mouse embryos to identify 8921 putative notochord enhancers. In addition, we established a new model for generating notochord-like cells in culture, and found 3728 of these enhancers occupied by the essential notochord control factors brachyury (T) and/or Foxa2. We describe the regulatory landscape of the T locus, comprising ten putative enhancers occupied by these factors, and confirmed the regulatory activity of three of these elements. Moreover, we characterized seven new elements by knockout analysis in embryos and identified one new notochord enhancer, termed TNE2. TNE2 cooperates with TNE in the trunk notochord, and is essential for notochord differentiation in the tail. Our data reveal an essential role of Foxa2 in directing T-expressing cells towards the notochord lineage.


Subject(s)
Enhancer Elements, Genetic , Notochord , Mice , Animals , Enhancer Elements, Genetic/genetics , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Fetal Proteins/genetics , Fetal Proteins/metabolism , Gene Expression Regulation, Developmental/genetics
3.
Development ; 148(23)2021 12 01.
Article in English | MEDLINE | ID: mdl-34822716

ABSTRACT

The node-streak border region comprising notochord progenitor cells (NPCs) at the posterior node and neuro-mesodermal progenitor cells (NMPs) in the adjacent epiblast is the prime organizing center for axial elongation in mouse embryos. The T-box transcription factor brachyury (T) is essential for both formation of the notochord and maintenance of NMPs, and thus is a key regulator of trunk and tail development. The T promoter controlling T expression in NMPs and nascent mesoderm has been characterized in detail; however, control elements for T expression in the notochord have not been identified yet. We have generated a series of deletion alleles by CRISPR/Cas9 genome editing in mESCs, and analyzed their effects in mutant mouse embryos. We identified a 37 kb region upstream of T that is essential for notochord function and tailbud outgrowth. Within that region, we discovered a T-binding enhancer required for notochord cell specification and differentiation. Our data reveal a complex regulatory landscape controlling cell type-specific expression and function of T in NMP/nascent mesoderm and node/notochord, allowing proper trunk and tail development.


Subject(s)
Embryonic Development/genetics , Enhancer Elements, Genetic/genetics , Fetal Proteins/genetics , T-Box Domain Proteins/genetics , Tail/growth & development , Amino Acid Sequence/genetics , Animals , CRISPR-Cas Systems/genetics , Gene Editing/methods , Gene Expression Regulation, Developmental/genetics , Mesoderm/growth & development , Mesoderm/metabolism , Mice , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , Notochord/growth & development , Notochord/metabolism , Promoter Regions, Genetic/genetics , Regulatory Sequences, Nucleic Acid/genetics , Tail/metabolism
4.
Science ; 370(6522)2020 12 11.
Article in English | MEDLINE | ID: mdl-33303587

ABSTRACT

Post-implantation embryogenesis is a highly dynamic process comprising multiple lineage decisions and morphogenetic changes that are inaccessible to deep analysis in vivo. We found that pluripotent mouse embryonic stem cells (mESCs) form aggregates that upon embedding in an extracellular matrix compound induce the formation of highly organized "trunk-like structures" (TLSs) comprising the neural tube and somites. Comparative single-cell RNA sequencing analysis confirmed that this process is highly analogous to mouse development and follows the same stepwise gene-regulatory program. Tbx6 knockout TLSs developed additional neural tubes mirroring the embryonic mutant phenotype, and chemical modulation could induce excess somite formation. TLSs thus reveal an advanced level of self-organization and provide a powerful platform for investigating post-implantation embryogenesis in a dish.


Subject(s)
Embryonic Development/physiology , Mouse Embryonic Stem Cells/physiology , Neural Tube/embryology , Somites/embryology , Animals , Embryonic Development/genetics , Gene Expression Regulation, Developmental , Mice , Mice, Knockout , Pyridines/pharmacology , Pyrimidines/pharmacology , T-Box Domain Proteins/genetics , Wnt Proteins/antagonists & inhibitors
5.
J Inherit Metab Dis ; 42(5): 839-849, 2019 09.
Article in English | MEDLINE | ID: mdl-31111503

ABSTRACT

Triosephosphate isomerase (TPI) deficiency is a fatal genetic disorder characterized by hemolytic anemia and neurological dysfunction. Although the enzyme defect in TPI was discovered in the 1960s, the exact etiology of the disease is still debated. Some aspects indicate the disease could be caused by insufficient enzyme activity, whereas other observations indicate it could be a protein misfolding disease with tissue-specific differences in TPI activity. We generated a mouse model in which exchange of a conserved catalytic amino acid residue (isoleucine to valine, Ile170Val) reduces TPI specific activity without affecting the stability of the protein dimer. TPIIle170Val/Ile170Val mice exhibit an approximately 85% reduction in TPI activity consistently across all examined tissues, which is a stronger average, but more consistent, activity decline than observed in patients or symptomatic mouse models that carry structural defect mutant alleles. While monitoring protein expression levels revealed no evidence for protein instability, metabolite quantification indicated that glycolysis is affected by the active site mutation. TPIIle170Val/Ile170Val mice develop normally and show none of the disease symptoms associated with TPI deficiency. Therefore, without the stability defect that affects TPI activity in a tissue-specific manner, a strong decline in TPI catalytic activity is not sufficient to explain the pathological onset of TPI deficiency.


Subject(s)
Anemia, Hemolytic, Congenital Nonspherocytic/pathology , Carbohydrate Metabolism, Inborn Errors/pathology , Catalytic Domain/genetics , Triose-Phosphate Isomerase/deficiency , Triose-Phosphate Isomerase/genetics , Anemia, Hemolytic, Congenital Nonspherocytic/enzymology , Animals , Behavior, Animal , Carbohydrate Metabolism, Inborn Errors/enzymology , Disease Models, Animal , Enzyme Stability , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mutation , Protein Multimerization
SELECTION OF CITATIONS
SEARCH DETAIL