Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38888612

ABSTRACT

PURPOSE: Hepatic fibrosis develops as a response to chronic liver injury, resulting in the formation of fibrous scars. This process is initiated and driven by collagen-producing activated myofibroblasts which reportedly express high levels of platelet derived growth factor receptor-ß (PDGFRß). We therefore regard PDGFRß as an anchor for diagnosis and therapy. The Fibrobody® SP02SP26-ABD is a biparatopic VHH-construct targeting PDGFRß. Here, we explore its potential as a theranostic vector for liver fibrosis. METHODS: Specificity, cross-species binding, and cellular uptake of SP02SP26-ABD was assessed using human, mouse and rat PDGFRß ectodomains and PDGFRß-expressing cells. Cellular uptake by PDGFRß-expressing cells was also evaluated by equipping the Fibrobody® with auristatinF and reading out in vitro cytotoxicity. The validity of PDGFRß as a marker for active fibrosis was confirmed in human liver samples and 3 mouse models of liver fibrosis (DDC, CCl4, CDA-HFD) through immunohistochemistry and RT-PCR. After radiolabeling of DFO*-SP02SP26-ABD with 89Zr, its in vivo targeting ability was assessed in healthy mice and mice with liver fibrosis by PET-CT imaging, ex vivo biodistribution and autoradiography. RESULTS: SP02SP26-ABD shows similar nanomolar affinity for human, mouse and rat PDGFRß. Cellular uptake and hence subnanomolar cytotoxic potency of auristatinF-conjugated SP02SP26-ABD was observed in PDGFRß-expressing cell lines. Immunohistochemistry of mouse and human fibrotic livers confirmed co-localization of PDGFRß with markers of active fibrosis. In all three liver fibrosis models, PET-CT imaging and biodistribution analysis of [89Zr]Zr-SP02SP26-ABD revealed increased PDGFRß-specific uptake in fibrotic livers. In the DDC model, liver uptake was 12.15 ± 0.45, 15.07 ± 0.90, 20.23 ± 1.34, and 20.93 ± 4.35%ID/g after 1,2,3 and 4 weeks of fibrogenesis, respectively, compared to 7.56 ± 0.85%ID/g in healthy mice. Autoradiography revealed preferential uptake in the fibrotic (PDGFRß-expressing) periportal areas. CONCLUSION: The anti-PDGFRß Fibrobody® SP02SP26-ABD shows selective and high-degree targeting of activated myofibroblasts in liver fibrosis, and qualifies as a vector for diagnostic and therapeutic purposes.

2.
Methods Mol Biol ; 2451: 481-493, 2022.
Article in English | MEDLINE | ID: mdl-35505026

ABSTRACT

Nanobodies have recently been introduced to the field of photodynamic therapy (PDT) as a very promising strategy to target photosensitizers selectively to cancer cells. Nanobodies are known for their characteristic small size (15 kDa), high specificity, and high binding affinities. These features allow rapid accumulation of nanobody-photosensitizer conjugates at the tumor site and rapid clearance of unbound fractions, and thus illumination for activation is possible 1 or 2 h postinjection. Preclinical studies have shown extensive tumor damage after nanobody-targeted PDT . This chapter addresses the first steps toward preparing nanobody-photosensitizer conjugates, which are the nanobody production and purification. The protocol for nanobody production addresses either medium- or large-scale bacterial expression, while the nanobody purification is described for two main strategies: affinity chromatography and ion-exchange chromatography. For the first strategy, protocols are described for different affinity tags and purification from either medium-scale or large-scale productions. For the second strategy, the protocol given is for purification from a large-scale production.


Subject(s)
Neoplasms , Photochemotherapy , Single-Domain Antibodies , Humans , Neoplasms/drug therapy , Photosensitizing Agents/chemistry , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/pharmacology , Single-Domain Antibodies/therapeutic use
3.
Biomolecules ; 11(7)2021 06 22.
Article in English | MEDLINE | ID: mdl-34206656

ABSTRACT

Antibody-drug conjugates (ADCs) are currently used for the targeted delivery of drugs to diseased cells, but intracellular drug delivery and therefore efficacy may be suboptimal because of the large size, slow internalization and ineffective intracellular trafficking of the antibody. Using a phage display method selecting internalizing phages only, we developed internalizing single domain antibodies (sdAbs) with high binding affinity to rat PDGFRß, a receptor involved in different types of diseases. We demonstrate that these constructs have different characteristics with respect to internalization rates but all traffic to lysosomes. To compare their efficacy in targeted drug delivery, we conjugated the sdAbs to a cytotoxic drug. The conjugates showed improved cytotoxicity correlating to their internalization speed. The efficacy of the conjugates was inhibited in the presence of vacuolin-1, an inhibitor of lysosomal maturation, suggesting lysosomal trafficking is needed for efficient drug release. In conclusion, sdAb constructs with different internalization rates can be designed against the same target, and sdAbs with a high internalization rate induce more cell killing than sdAbs with a lower internalization rate in vitro. Even though the overall efficacy should also be tested in vivo, sdAbs are particularly interesting formats to be explored to obtain different internalization rates.


Subject(s)
Drug Carriers , Receptor, Platelet-Derived Growth Factor beta/antagonists & inhibitors , Single-Chain Antibodies , Animals , Cell Line, Tumor , Cytotoxins/chemistry , Cytotoxins/pharmacokinetics , Cytotoxins/pharmacology , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Drug Carriers/pharmacology , Lysosomes/metabolism , Mice , Proof of Concept Study , Rats , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/pharmacokinetics , Single-Chain Antibodies/pharmacology
4.
Cancers (Basel) ; 12(5)2020 05 16.
Article in English | MEDLINE | ID: mdl-32429338

ABSTRACT

Antibodies-recognising peptides bound to the major histocompatibility complex (pMHC) represent potentially valuable and promising targets for chimeric antigen receptor (CAR) T cells to treat patients with cancer. Here, a human phage-Fab library has been selected using HLA-A2 complexed with a heteroclitic peptide variant from an epitope shared among multiple melanoma-associated antigens (MAGEs). DNA restriction analyses and phage ELISAs confirmed selection of unique antibody clones that specifically bind to HLA-A2 complexes or HLA-A2-positive target cells loaded with native or heteroclitic peptide. Antibodies selected against heteroclitic peptide, in contrast to native peptide, demonstrated significantly lower to even negligible binding towards native peptide or tumour cells that naturally expressed peptides. The binding to native peptide was not rescued by phage panning with antigen-positive tumour cells. Importantly, when antibodies directed against heteroclitic peptides were engineered into CARs and expressed by T cells, binding to native peptides and tumour cells was minimal to absent. In short, TCR-like antibodies, when isolated from a human Fab phage library using heteroclitic peptide, fail to recognise its native peptide. We therefore argue that peptide modifications to improve antibody selections should be performed with caution as resulting antibodies, either used directly or as CARs, may lose activity towards endogenously presented tumour epitopes.

5.
Cancer Treat Rev ; 67: 54-62, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29763778

ABSTRACT

Targeted anti-cancer therapies aim at reducing side effects while retaining their anti-cancer efficacy. Immunotherapies e.g. monoclonal antibodies, adoptive T cell therapy and cancer vaccines are used to combat cancer, but the number of available cancer specific targets is limited and new approaches are needed to generate more effective and patient tailored treatments. Unique cancer intracellular epitopes can be presented on the cell surface by MHC class I molecules, which can function as epitopes for targeted therapies. The intracellular MAGE proteins belong to a sub-class of Cancer Testis (CT) antigens which are expressed in germline cells and a wide variety of tumors of different histological origin. Evidence has emerged that their expression is linked to pro-tumorigenic activities like increased cell motility, resisting cell death, and tumor promoting inflammation. Intracellular MAGE proteins are processed by the proteasome and their peptides are presented by MHC class I molecules on the cell surface of cancer cells thereby making them ideal cancer specific antigens. Here we review the previous and ongoing (pre-) clinical studies on the use of surface expressed MAGE antigens for their employment in targeted anti-cancer therapies. We present and analyze study outcomes and discuss possible future directions and improvements for MAGE directed anti-cancer immunotherapies.


Subject(s)
Immunotherapy , Melanoma-Specific Antigens/immunology , Neoplasms/therapy , Antibodies, Monoclonal/therapeutic use , Cancer Vaccines/immunology , Humans , Immunotherapy, Adoptive , T-Lymphocytes/immunology
6.
Int J Nanomedicine ; 11: 955-75, 2016.
Article in English | MEDLINE | ID: mdl-27022262

ABSTRACT

Therapy of melanoma using T-cells with genetically introduced T-cell receptors (TCRs) directed against a tumor-selective cancer testis antigen (CTA) NY-ESO1 demonstrated clear antitumor responses in patients without side effects. Here, we exploited the concept of TCR-mediated targeting through introduction of single-chain variable fragment (scFv) antibodies that mimic TCRs in binding major histocompatibility complex-restricted CTA. We produced scFv antibodies directed against Melanoma AntiGEn A1 (MAGE A1) presented by human leukocyte antigen A1 (HLA-A1), in short M1/A1, and coupled these TCR-like antibodies to liposomes to achieve specific melanoma targeting. Two anti-M1/A1 antibodies with different ligand-binding affinities were derived from a phage-display library and reformatted into scFvs with an added cysteine at their carboxyl termini. Protein production conditions, ie, bacterial strain, temperature, time, and compartments, were optimized, and following production, scFv proteins were purified by immobilized metal ion affinity chromatography. Batches of pure scFvs were validated for specific binding to M1/A1-positive B-cells by flow cytometry. Coupling of scFvs to liposomes was conducted by employing different conditions, and an optimized procedure was achieved. In vitro experiments with immunoliposomes demonstrated binding of M1/A1-positive B-cells as well as M1/A1-positive melanoma cells and internalization by these cells using flow cytometry and confocal microscopy. Notably, the scFv with nonenhanced affinity of M1/A1, but not the one with enhanced affinity, was exclusively bound to and internalized by melanoma tumor cells expressing M1/A1. Taken together, antigen-mediated targeting of tumor cells as well as promoting internalization of nanoparticles by these tumor cells is mediated by TCR-like scFv and can contribute to melanoma-specific targeting.


Subject(s)
Melanoma-Specific Antigens/immunology , Melanoma/drug therapy , Melanoma/immunology , Molecular Targeted Therapy/methods , Receptors, Antigen, T-Cell/metabolism , Single-Chain Antibodies/administration & dosage , Single-Chain Antibodies/immunology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cell Line, Tumor , HLA-A1 Antigen/metabolism , Humans , Liposomes , Melanoma/metabolism , Single-Chain Antibodies/therapeutic use , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
7.
Methods Mol Biol ; 907: 645-66, 2012.
Article in English | MEDLINE | ID: mdl-22907378

ABSTRACT

The Chimeric Antigen Receptor (CAR) consists of an antibody-derived targeting domain fused with T-cell signaling domains that, when expressed by a T-cell, endows the T-cell with antigen specificity determined by the targeting domain of the CAR. CARs can potentially redirect the effector functions of a T-cell towards any protein and nonprotein target expressed on the cell surface as long as an antibody or similar targeting domain is available. This strategy thereby avoids the requirement of antigen processing and presentation by the target cell and is applicable to nonclassical T-cell targets like carbohydrates. This circumvention of HLA-restriction means that the CAR T-cell approach can be used as a generic tool broadening the potential of applicability of adoptive T-cell therapy. Proof-of-principle studies focusing upon the investigation of the potency of CAR T-cells have primarily focused upon the genetic modification of human and mouse T-cells for therapy. This chapter focuses upon methods to modify T-cells from both species to generate CAR T-cells for functional testing.


Subject(s)
Immunotherapy, Adoptive/methods , Receptors, Antigen/immunology , Recombinant Proteins/immunology , T-Lymphocytes/immunology , Animals , Antibodies/immunology , Cell Proliferation , Cell Separation , Electroporation , Humans , Lymph Nodes/cytology , Lymphocyte Activation/immunology , Lymphocyte Subsets/immunology , Mice , Microspheres , RNA/metabolism , Retroviridae/physiology , Spleen/cytology , T-Lymphocytes/cytology , T-Lymphocytes/virology , Transcription, Genetic , Transduction, Genetic , Transfection
8.
J Sch Psychol ; 50(2): 215-34, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22386121

ABSTRACT

The Student-Teacher Relationship Scale (STRS) is widely used to examine teachers' relationships with young students in terms of closeness, conflict, and dependency. This study aimed to verify the dimensional structure of the STRS with confirmatory factor analysis, test its measurement invariance across child gender and age, improve its measurement of the dependency construct, and extend its age range. Teachers completed a slightly adapted STRS for a Dutch sample of 2335 children aged 3 to 12. Overall, the 3-factor model showed an acceptable fit. Results indicated metric invariance across gender and age up to 8years. Scalar invariance generally did not hold. Lack of metric invariance at ages 8 to 12 primarily involved Conflict items, whereas scale differences across gender and age primarily involved Closeness items. The adapted Dependency scale showed strong invariance and higher internal consistencies than the original scale for this Dutch sample. Importantly, the revealed non-invariance for gender and age did not influence mean group comparisons.


Subject(s)
Faculty , Interpersonal Relations , Students/psychology , Age Factors , Child , Child, Preschool , Factor Analysis, Statistical , Female , Humans , Male , Netherlands , Psychometrics , Reproducibility of Results , Schools , Sex Factors
9.
Biochem Pharmacol ; 82(10): 1430-7, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-21664896

ABSTRACT

In humans, T-cells accomplish expression of MHC-II molecules through induction of CIITA upon activation. Here we show that CIITA promoter accessibility in T-cells is epigenetically regulated. In unstimulated T-cells, CIITA-PIII chromatin displays relative high levels of repressive histone methylation marks (3Me-K27-H3 and 3Me-K20-H4) and low levels of acetylated histones H3 (Ac-H3) and H4 (Ac-H4). These repressive histone marks are replaced by histone methylation marks associated with transcriptional active genes (3Me-K4-H3) and high levels of Ac-H3 and Ac-H4 in activated T-cells. This is associated with concomitant recruitment of RNA polymerase II. In T-leukemia cells, devoid of CIITA expression, similar repressive histone methylation marks and low levels of acetylated histone H3 correlated with lack of CIITA expression. This in contrast to CIITA expressing T-lymphoma cells, which display high levels of Ac-H3 and 3Me-K4-H3, and relative low levels of the 3Me-K27-H3 and 3Me-K20-H4 marks. Of interest was the observation that the levels of histone acetylation and methylation modifications in histones H3 and H4 were also noted in chromatin of the downstream CIITA-PIV promoter as well as the upstream CIITA-PI and CIITA-PII promoters both in normal T-cells and in malignant T-cells. Together our data show that CIITA chromatin in T-cells expressing CIITA display similar histone acetylation and methylation characteristics associated with an open chromatin structure. The opposite is true for T-cells lacking CIITA expression, which display histone modifications characteristic of condensed chromatin.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , Epigenesis, Genetic/physiology , Nuclear Proteins/metabolism , Trans-Activators/metabolism , Acetylation , Base Sequence , Cell Line , Chromatin , CpG Islands , DNA Methylation , Gene Expression Regulation/physiology , Histones/metabolism , Humans , Methylation , Molecular Sequence Data , Nuclear Proteins/genetics , Promoter Regions, Genetic , Trans-Activators/genetics
10.
Pharm Res ; 27(11): 2274-82, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20300804

ABSTRACT

PURPOSE: A new universal tool for specific, non-covalent and non-destructive attachment of a recombinant antibody fragment to a polymer-modified adenovirus has been utilised to regulate the tropism of adenoviral gene delivery vector. METHODS: We have prepared a multivalent reactive N-(2-hydroxypropyl)methacrylamide-based copolymer (PHPMA) bearing an α-bungarotoxin-binding peptide (BTXbp). The copolymer was used for covalent surface modification of adenoviral vectors (Ad). The α-bungarotoxin protein (BTX) has a nanomolar binding affinity for BTXbp, allowing non-covalent linkage of BTX fusion proteins. A single chain variable fragment of anti-PSMA antibody bearing BTX (scFv-BTX) binding to the prostate-specific membrane antigen (PSMA) was conjugated with the copolymer-coated adenovirus to enable specific infection of prostate cancer cells via PSMA receptors. RESULTS: As shown by ELISA, the copolymer-coated virus exhibited much reduced binding to anti-Ad antibodies. Infection of PC-3 and LNCaP prostate cancer cells was ∼100-fold less efficient with copolymer-coated Ad than with un-modified Ad. Conjugation of scFv-BTX with Ad-PHPMA-BTXbp led to 5-10-fold restoration of infection in PSMA-positive LNCaP cells. In PSMA-negative PC-3 cells, the conjugation of scFv-BTX with Ad-PHPMA-BTXbp gave no enhancement of infection. CONCLUSIONS: We have shown that the presented Ad-PHPMA-BTXbp/scFv-BTX system can be used as a universal tool for a receptor-specific virotherapy.


Subject(s)
Bungarotoxins/chemistry , Gene Transfer Techniques , Polymers , Amino Acid Sequence , Cell Line, Tumor , Chromatography, High Pressure Liquid , Enzyme-Linked Immunosorbent Assay , Humans , Molecular Sequence Data
11.
Hum Gene Ther ; 21(7): 795-805, 2010 Jul.
Article in English | MEDLINE | ID: mdl-19947826

ABSTRACT

Prostate cancer is a leading cause of death among men in Western countries. Whereas the survival rate approaches 100% for patients with localized cancer, the results of treatment in patients with metastasized prostate cancer at diagnosis are much less successful. The patients are usually presented with a variety of treatment options, but therapeutic interventions in prostate cancer are associated with frequent adverse side effects. Gene therapy and oncolytic virus therapy may constitute new strategies. Already a wide variety of preclinical studies has demonstrated the therapeutic potential of such approaches, with oncolytic prostate-specific adenoviruses as the most prominent vector. The state of the art and future prospects of gene therapy in prostate cancer are reviewed, with a focus on adenoviral vectors. We summarize advances in adenovirus technology for prostate cancer treatment and highlight areas where further developments are necessary.


Subject(s)
Adenoviridae/genetics , Genetic Therapy , Genetic Vectors/genetics , Prostatic Neoplasms/therapy , Genetic Therapy/methods , Genetic Therapy/trends , Humans , Male
12.
Hum Gene Ther ; 21(7): 807-13, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20001452

ABSTRACT

Prostate cancer is at present the most common malignancy in men in the Western world. When localized to the prostate, this disease can be treated by curative therapy such as surgery and radiotherapy. However, a substantial number of patients experience a recurrence, resulting in spreading of tumor cells to other parts of the body. In this advanced stage of the disease only palliative treatment is available. Therefore, there is a clear clinical need for new treatment modalities that can, on the one hand, enhance the cure rate of primary therapy for localized prostate cancer and, on the other hand, improve the treatment of metastasized disease. Gene therapy is now being explored in the clinic as a treatment option for the various stages of prostate cancer. Current clinical experiences are based predominantly on trials with adenoviral vectors. As the first of a trilogy of reviews on the state of the art and future prospects of gene therapy in prostate cancer, this review focuses on the clinical experiences and progress of adenovirus-mediated gene therapy for this disease.


Subject(s)
Adenoviridae/genetics , Genetic Therapy/methods , Prostatic Neoplasms/therapy , Genetic Therapy/trends , Humans , Male , Neoplasm Staging , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/surgery , Treatment Outcome
13.
Cytometry A ; 73(11): 1093-9, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18785268

ABSTRACT

Adoptive transfer of antigen-specific T-cells has shown therapeutic successes in the treatment of tumors in patients with metastatic melanoma. Tumor antigen-specific T-lymphocytes, however, occur only at low frequencies in a small proportion of patients. This low T-lymphocyte frequency together with the difficulties associated with in vitro generation of T-lymphocytes specific for cancers other than melanoma hampers adoptive T cell therapy. To make adoptive T-cell therapy more uniformly applicable, strategies were developed at transferring tumor-specificity to primary human T-lymphocytes via antibody (Ig) or T-cell receptor (TCR) molecules. We exploited the selection power of phage display that allows for the testing of tens of billions of individual clones with a high-throughput selection of Fabs with peptide/MHC complex binding capacity. Following in vitro selection, human "TCR-like" Fab fragments have been functionally expressed on human T-lymphocytes, resulting in MHC-restricted, tumor-specific lysis and cytokine production. Currently, we have extended our selections to a panel of class I and II MHC-restricted MAGE and other tumor-specific epitopes, and would like to propose that phage display represents a technology able to expand T-cell therapy to numerous tumor types.


Subject(s)
Epitopes, T-Lymphocyte/immunology , Immunoglobulin Fragments/immunology , Immunotherapy, Adoptive , Neoplasms/immunology , Antibodies, Neoplasm/immunology , Humans , Receptors, Antigen, T-Cell/immunology
14.
J Immunol ; 180(11): 7736-46, 2008 Jun 01.
Article in English | MEDLINE | ID: mdl-18490778

ABSTRACT

TCR gene therapy is adversely affected by newly formed TCRalphabeta heterodimers comprising exogenous and endogenous TCR chains that dilute expression of transgenic TCRalphabeta dimers and are potentially self-reactive. We have addressed TCR mispairing by using a modified two-chain TCR that encompasses total human CD3zeta with specificities for three different Ags. Transfer of either TCRalpha:CD3zeta or beta:CD3zeta genes alone does not result in surface expression, whereas transfer of both modified TCR chains results in high surface expression, binding of peptide-MHC complexes and Ag-specific T cell functions. Genetic introduction of TCRalphabeta:zeta does not compromise surface expression and functions of an endogenous TCRalphabeta. Flow cytometry fluorescence resonance energy transfer and biochemical analyses demonstrate that TCRalphabeta:CD3zeta is the first strategy that results in highly preferred pairing between CD3zeta-modified TCRalpha and beta chains as well as absence of TCR mispairing between TCR:CD3zeta and nonmodified TCR chains. Intracellular assembly and surface expression of TCR:CD3zeta chains is independent of endogenous CD3gamma, delta, and epsilon. Taken together, our data support the use of TCRalphabeta:CD3zeta to prevent TCR mispairing, which may provide an adequate strategy to enhance efficacy and safety of TCR gene transfer.


Subject(s)
CD3 Complex/genetics , Receptors, Antigen, T-Cell, alpha-beta/genetics , T-Lymphocytes/immunology , CD3 Complex/immunology , CD3 Complex/metabolism , Cell Line , Gene Transfer Techniques , Humans , Jurkat Cells , Receptors, Antigen, T-Cell, alpha-beta/immunology , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Signal Transduction , T-Lymphocytes/metabolism
15.
J Immunol ; 179(8): 5317-25, 2007 Oct 15.
Article in English | MEDLINE | ID: mdl-17911618

ABSTRACT

We investigated the contribution of epigenetic mechanisms in MHC2TA transcriptional silencing in uveal melanoma. Although no correlation was observed between impaired CIITA transcript levels after IFN-gamma induction and DNA methylation of MHC2TA promoter IV (CIITA-PIV), an association was found with high levels of trimethylated histone H3-lysine 27 (3Me-K27-H3) in CIITA-PIV chromatin. The 3Me-K27-H3 modification correlated with a strong reduction in RNA polymerase II-recruitment to CIITA-PIV. Interestingly, we observed that none of these epigenetic modifications affected recruitment of activating transcription factors to this promoter. Subsequently, we demonstrated the presence of the histone methyltransferase EZH2 in CIITA-PIV chromatin, which is known to be a component of the Polycomb repressive complex 2 and able to triple methylate histone H3-lysine 27. RNA interference-mediated down-regulation of EZH2 expression resulted in an increase in CIITA transcript levels after IFN-gamma induction. Our data therefore reveal that EZH2 contributes to silencing of IFN-gamma-inducible transcription of MHC2TA in uveal melanoma cells.


Subject(s)
DNA-Binding Proteins/physiology , Gene Expression Regulation, Neoplastic/immunology , Histocompatibility Antigens Class II/biosynthesis , Histocompatibility Antigens Class II/genetics , Interferon-gamma/physiology , Melanoma/immunology , Nuclear Proteins/antagonists & inhibitors , Trans-Activators/antagonists & inhibitors , Transcription Factors/physiology , Uveal Neoplasms/immunology , Base Sequence , Cell Line, Tumor , Enhancer of Zeste Homolog 2 Protein , Gene Silencing/immunology , Humans , Melanoma/genetics , Melanoma/metabolism , Molecular Sequence Data , Nuclear Proteins/biosynthesis , Nuclear Proteins/genetics , Polycomb Repressive Complex 2 , Promoter Regions, Genetic/immunology , RNA Interference/immunology , Trans-Activators/biosynthesis , Trans-Activators/genetics , Transcription, Genetic/immunology , Uveal Neoplasms/genetics , Uveal Neoplasms/metabolism
16.
Immunogenetics ; 57(10): 795-9, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16235089

ABSTRACT

In contrast to activated human T cells, activated mouse T cells fail to express MHC class II molecules (MHC-II) at their cell surface. This is because mouse T cells hardly produce mRNA encoding the MHC-II molecules I-A and I-E, due to severely impaired expression levels upon T-cell activation of the mhc2ta gene, encoding the class II transactivator (CIITA). In humans, activated T cells express exclusively the CIITA promoter III (CIITA-PIII) isoform, which results in cell surface expression of all MHC-II isotypes (HLA-DR, -DP and -DQ). In this study, we demonstrate that methylation of CIITA-PIII contributes to the failure of mouse T cells to transcribe the mhc2ta and the resulting I-A/E genes, explaining the lack of I-A/E molecule expression at the cell surface following activation.


Subject(s)
DNA Methylation , Histocompatibility Antigens Class II/biosynthesis , Nuclear Proteins/genetics , T-Lymphocytes/immunology , Trans-Activators/genetics , Animals , Cell Line , Gene Expression Regulation , Histocompatibility Antigens Class II/genetics , Humans , Lymphocyte Activation , Mice , Nuclear Proteins/immunology , T-Lymphocytes/metabolism , Trans-Activators/immunology
17.
Hum Immunol ; 65(4): 282-90, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15120183

ABSTRACT

The main function of major histocompatibility complex (MHC) class II molecules is to present processed antigens, which are derived primarily from exogenous sources, to CD4(+) T-lymphocytes. MHC class II molecules thereby are critical for the initiation of the antigen-specific immune response. Besides antigen presentation, growing evidence is showing that ligation of MHC class II molecules also activates intracellular signaling pathways, frequently leading to apoptosis. Constitutive expression of MHC class II molecules is confined to professional antigen-presenting cells (APC) of the immune system, and in nonprofessional APCs MHC class II molecules can be induced by a variety of immune regulators. Interestingly, activated T cells from many species, with the exception of mice, synthesize and express MHC class II molecules at their cell surface. In this review, we discuss our current knowledge on the transcriptional regulation of MHC class II expression in activated human and mouse T cells, and the contribution of DNA methylation of the T-cell employed class II transactivator promoter III to the MHC class II deficiency of mouse T cells. We also discuss the proposed functions of the activated T cell synthesized and expressed MHC class II molecules, including antigen presentation, T-T cell interactions, and MHC class II-mediated intracellular signaling.


Subject(s)
Genes, MHC Class II/genetics , Histocompatibility Antigens Class II/physiology , T-Lymphocytes/immunology , Animals , Antigen-Presenting Cells/immunology , Apoptosis , Gene Expression Regulation , Histocompatibility Antigens Class II/biosynthesis , Humans , Lymphocyte Activation/immunology , Male , Methylation , Mice , Nuclear Proteins/genetics , Promoter Regions, Genetic , Signal Transduction , Thymus Gland/immunology , Trans-Activators/genetics
18.
Blood ; 103(4): 1438-44, 2004 Feb 15.
Article in English | MEDLINE | ID: mdl-14563641

ABSTRACT

Expression of major histocompatibility complex (MHC) class II molecules in human activated T cells is under normal circumstances regulated exclusively by the CIITA-PIII subtype of the class II transactivator (CIITA). In this study, we show that the absence of MHC class II expression in leukemic T cells was due to a lack of expression of CIITA, whereas in T-lymphoma cells, expression of CIITA correlated with expression of MHC class II. Interestingly, activation of a CIITA-promoter (P)III-reporter construct was not affected in leukemic T cells. This revealed that the absence of endogenous CIITA expression was not caused by a lack of transcription factors critical for CIITA-PIII activation but suggests the involvement of an epigenetic silencing mechanism. Subsequent analysis showed that the lack of human leukocyte antigen-DR (HLA-DR) expression correlated with hypermethylation of CIITA-PIII in leukemic T-cell lines and in primary T-cell acute lymphoblastic leukemia (T-ALL) and a T-cell prolymphocytic leukemia (T-PLL). Treatment of leukemic T-cell lines with a demethylation agent showed re-expression of CIITA-PIII and HLA-DRA. Furthermore, in vitro methylation of CIITA-PIII and subsequent assessment of CIITA-PIII activity in Jurkat leukemic T cells resulted in reduction of constitutive and CREB-1 (cyclic adenosine monophosphate [cAMP]-response element binding protein 1)-induced promoter activity. Together, these results argue for an important role of DNA hyper-methylation in the control of CIITA expression in leukemic T cells.


Subject(s)
Histocompatibility Antigens Class II/genetics , Leukemia, T-Cell/physiopathology , Lymphoma, T-Cell/physiopathology , Biomarkers , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Histocompatibility Antigens Class II/metabolism , Humans , Jurkat Cells , Leukemia, Prolymphocytic/metabolism , Leukemia, Prolymphocytic/physiopathology , Leukemia, T-Cell/metabolism , Lymphoma, T-Cell/metabolism , Methylation , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/physiopathology , Regulatory Factor X Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...