Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Front Immunol ; 15: 1344761, 2024.
Article in English | MEDLINE | ID: mdl-38487529

ABSTRACT

Background: The importance of CD11b/CD18 expression in neutrophil effector functions is well known. Beyond KINDLIN3 and TALIN1, which are involved in the induction of the high-affinity binding CD11b/CD18 conformation, the signaling pathways that orchestrate this response remain incompletely understood. Method: We performed an unbiased screening method for protein selection by biotin identification (BioID) and investigated the KINDLIN3 interactome. We used liquid chromatography with tandem mass spectrometry as a powerful analytical tool. Generation of NB4 CD18, KINDLIN3, or SKAP2 knockout neutrophils was achieved using CRISPR-Cas9 technology, and the cells were examined for their effector function using flow cytometry, live cell imaging, microscopy, adhesion, or antibody-dependent cellular cytotoxicity (ADCC). Results: Among the 325 proteins significantly enriched, we identified Src kinase-associated phosphoprotein 2 (SKAP2), a protein involved in actin polymerization and integrin-mediated outside-in signaling. CD18 immunoprecipitation in primary or NB4 neutrophils demonstrated the presence of SKAP2 in the CD11b/CD18 complex at a steady state. Under this condition, adhesion to plastic, ICAM-1, or fibronectin was observed in the absence of SKAP2, which could be abrogated by blocking the actin rearrangements with latrunculin B. Upon stimulation of NB4 SKAP2-deficient neutrophils, adhesion to fibronectin was enhanced whereas CD18 clustering was strongly reduced. This response corresponded with significantly impaired CD11b/CD18-dependent NADPH oxidase activity, phagocytosis, and cytotoxicity against tumor cells. Conclusion: Our results suggest that SKAP2 has a dual role. It may restrict CD11b/CD18-mediated adhesion only under resting conditions, but its major contribution lies in the regulation of dynamic CD11b/CD18-mediated actin rearrangements and clustering as required for cellular effector functions of human neutrophils.


Subject(s)
Neutrophils , src-Family Kinases , Humans , Neutrophils/metabolism , src-Family Kinases/metabolism , Fibronectins/metabolism , CD18 Antigens/metabolism , Cell Adhesion , Actins/metabolism , Phosphoproteins/metabolism , Macrophage-1 Antigen/metabolism
2.
Int J Mol Sci ; 24(24)2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38138970

ABSTRACT

Since the successful introduction of checkpoint inhibitors targeting the adaptive immune system, monoclonal antibodies inhibiting CD47-SIRPα interaction have shown promise in enhancing anti-tumor treatment efficacy. Apart from SIRPα, neutrophils express a broad repertoire of inhibitory receptors, including several members of the sialic acid-binding receptor (SIGLEC) family. Here, we demonstrate that interaction between tumor cell-expressed sialic acids and SIGLEC-5/14 on neutrophils inhibits antibody-dependent cellular cytotoxicity (ADCC). We observed that conjugate formation and trogocytosis, both essential processes for neutrophil ADCC, were limited by the sialic acid-SIGLEC-5/14 interaction. During neutrophil-tumor cell conjugate formation, we found that inhibition of the interaction between tumor-expressed sialic acids and SIGLEC-5/14 on neutrophils increased the CD11b/CD18 high affinity conformation. By dynamic acoustic force measurement, the binding between tumor cells and neutrophils was assessed. The interaction between SIGLEC-5/14 and the sialic acids was shown to inhibit the CD11b/CD18-regulated binding between neutrophils and antibody-opsonized tumor cells. Moreover, the interaction between sialic acids and SIGLEC-5/14-consequently hindered trogocytosis and tumor cell killing. In summary, our results provide evidence that the sialic acid-SIGLEC-5/14 interaction is an additional target for innate checkpoint blockade in the tumor microenvironment.


Subject(s)
Neoplasms , Neutrophils , Humans , Neutrophils/metabolism , N-Acetylneuraminic Acid , Macrophage-1 Antigen , Neoplasms/drug therapy , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism , Tumor Microenvironment
3.
J Immunother Cancer ; 10(6)2022 06.
Article in English | MEDLINE | ID: mdl-35728876

ABSTRACT

BACKGROUND: Neutrophils kill antibody-opsonized tumor cells using trogocytosis, a unique mechanism of destruction of the target plasma. This previously unknown cytotoxic process of neutrophils is dependent on antibody opsonization, Fcγ receptors and CD11b/CD18 integrins. Here, we demonstrate that tumor cells can escape neutrophil-mediated cytotoxicity by calcium (Ca2+)-dependent and exocyst complex-dependent plasma membrane repair. METHODS: We knocked down EXOC7 or EXOC4, two exocyst components, to evaluate their involvement in tumor cell membrane repair after neutrophil-induced trogocytosis. We used live cell microscopy and flow cytometry for visualization of the host and tumor cell interaction and tumor cell membrane repair. Last, we reported the mRNA levels of exocyst in breast cancer tumors in correlation to the response in trastuzumab-treated patients. RESULTS: We found that tumor cells can evade neutrophil antibody-dependent cellular cytotoxicity (ADCC) by Ca2+-dependent cell membrane repair, a process induced upon neutrophil trogocytosis. Absence of exocyst components EXOC7 or EXOC4 rendered tumor cells vulnerable to neutrophil-mediated ADCC (but not natural killer cell-mediated killing), while neutrophil trogocytosis remained unaltered. Finally, mRNA levels of exocyst components in trastuzumab-treated patients were inversely correlated to complete response to therapy. CONCLUSIONS: Our results support that neutrophil attack towards antibody-opsonized cancer cells by trogocytosis induces an active repair process by the exocyst complex in vitro. Our findings provide insight to the possible contribution of neutrophils in current antibody therapies and the tolerance mechanism of tumor cells and support further studies for potential use of the exocyst components as clinical biomarkers.


Subject(s)
Breast Neoplasms , Neutrophils , Antibodies , Antibody-Dependent Cell Cytotoxicity , Female , Humans , RNA, Messenger , Trastuzumab/pharmacology
4.
Blood Adv ; 6(7): 2156-2166, 2022 04 12.
Article in English | MEDLINE | ID: mdl-34942000

ABSTRACT

Anti-CD20 antibodies such as rituximab are broadly used to treat B-cell malignancies. These antibodies can induce various effector functions, including immune cell-mediated antibody-dependent cellular cytotoxicity (ADCC). Neutrophils can induce ADCC toward solid cancer cells by trogoptosis, a cytotoxic mechanism known to be dependent on trogocytosis. However, neutrophils seem to be incapable of killing rituximab-opsonized B-cell lymphoma cells. Nevertheless, neutrophils do trogocytose rituximab-opsonized B-cell lymphoma cells, but this only reduces CD20 surface expression and is thought to render tumor cells therapeutically resistant to further rituximab-dependent destruction. Here, we demonstrate that resistance of B-cell lymphoma cells toward neutrophil killing can be overcome by a combination of CD47-SIRPα checkpoint blockade and sodium stibogluconate (SSG), an anti-leishmaniasis drug and documented inhibitor of the tyrosine phosphatase SHP-1. SSG enhanced neutrophil-mediated ADCC of solid tumor cells but enabled trogoptotic killing of B-cell lymphoma cells by turning trogocytosis from a mechanism that contributes to resistance into a cytotoxic anti-cancer mechanism. Tumor cell killing in the presence of SSG required both antibody opsonization of the target cells and disruption of CD47-SIRPα interactions. These results provide a more detailed understanding of the role of neutrophil trogocytosis in antibody-mediated destruction of B cells and clues on how to further optimize antibody therapy of B-cell malignancies.


Subject(s)
CD47 Antigen , Neutrophils , Antibody-Dependent Cell Cytotoxicity , Antimony Sodium Gluconate , CD47 Antigen/metabolism , Neutrophils/metabolism , Rituximab/pharmacology , Rituximab/therapeutic use
5.
Cancers (Basel) ; 13(17)2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34503071

ABSTRACT

High-risk neuroblastoma, especially after recurrence, still has a very low survival rate. Immune checkpoint inhibitors targeting T cells have shown remarkable clinical efficacy in adult solid tumors, but their effects in pediatric cancers have been limited so far. On the other hand, targeting myeloid immune checkpoints, such as CD47-SIPRα, provide the opportunity to enhance antitumor effects of myeloid cells, including that of neutrophils, especially in the presence of cancer-opsonizing antibodies. Disialoganglioside (GD2)-expressing neuroblastoma cells targeted with anti-GD2 antibody dinutuximab are in part eradicated by neutrophils, as they recognize and bind the antibody targeted tumor cells through their Fc receptors. Therapeutic targeting of the innate immune checkpoint CD47-SIRPα has been shown to promote the potential of neutrophils as cytotoxic cells in different solid tumor indications using different cancer-targeting antibodies. Here, we demonstrate that the capacity of neutrophils to kill dinutuximab-opsonized neuroblastoma cells is also controlled by the CD47-SIRPα axis and can be further enhanced by antagonizing CD47-SIRPα interactions. In particular, CD47-SIRPa checkpoint inhibition enhanced neutrophil-mediated ADCC of dinutuximab-opsonized adrenergic neuroblastoma cells, whereas mesenchymal neuroblastoma cells may evade immune recognition by a reduction of GD2 expression. These findings provide a rational basis for targeting CD47-SIRPα interactions to potentiate dinutuximab responsiveness in neuroblastomas with adrenergic phenotype.

6.
J Immunother Cancer ; 9(5)2021 05.
Article in English | MEDLINE | ID: mdl-34049929

ABSTRACT

BACKGROUND: Current immunotherapy for patients with high-risk neuroblastoma involves the therapeutic antibody dinutuximab that targets GD2, a ganglioside expressed on the majority of neuroblastoma tumors. Opsonized tumor cells are killed through antibody-dependent cellular cytotoxicity (ADCC), a process mediated by various immune cells, including neutrophils. The capacity of neutrophils to kill dinutuximab-opsonized tumor cells can be further enhanced by granulocyte-macrophage colony-stimulating factor (GM-CSF), which has been shown in the past to improve responses to anti-GD2 immunotherapy. However, access to GM-CSF (sargramostim) is limited outside of Northern America, creating a high clinical need for an alternative method to stimulate dinutuximab responsiveness in the treatment of neuroblastoma. In this in vitro study, we have investigated whether clinically well-established granulocyte colony-stimulating factor (G-CSF) can be a potentially suitable alternative for GM-CSF in the dinutuximab immunotherapy regimen of patients with neuroblastoma. METHODS: We compared the capacity of neutrophils stimulated either in vitro or in vivo with GM-CSF or G-CSF to kill dinutuximab-opsonized GD2-positive neuroblastoma cell lines and primary patient tumor material. Blocking experiments with antibodies inhibiting either respective Fc gamma receptors (FcγR) or neutrophil integrin CD11b/CD18 demonstrated the involvement of these receptors in the process of ADCC. Flow cytometry and live cell microscopy were used to quantify and visualize neutrophil-neuroblastoma interactions. RESULTS: We found that G-CSF was as potent as GM-CSF in enhancing the killing capacity of neutrophils towards neuroblastoma cells. This was observed with in vitro stimulated neutrophils, and with in vivo stimulated neutrophils from both patients with neuroblastoma and healthy donors. Enhanced killing due to GM-CSF or G-CSF stimulation was consistent regardless of dinutuximab concentration, tumor-to-neutrophil ratio and concentration of the stimulating cytokine. Both GM-CSF and G-CSF stimulated neutrophils required FcγRIIa and CD11b/CD18 integrin to perform ADCC, and this was accompanied by trogocytosis of tumor material by neutrophils and tumor cell death in both stimulation conditions. CONCLUSIONS: Our preclinical data support the use of G-CSF as an alternative stimulating cytokine to GM-CSF in the treatment of high-risk neuroblastoma with dinutuximab, warranting further testing of G-CSF in a clinical setting.


Subject(s)
Adjuvants, Immunologic/pharmacology , Antibodies, Monoclonal/pharmacology , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cytotoxicity, Immunologic/drug effects , Granulocyte Colony-Stimulating Factor/pharmacology , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Neuroblastoma/drug therapy , Neutrophils/drug effects , CD11b Antigen/metabolism , CD18 Antigens/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Coculture Techniques , Humans , Neuroblastoma/immunology , Neuroblastoma/metabolism , Neuroblastoma/pathology , Neutrophils/immunology , Neutrophils/metabolism , Neutrophils/pathology , Receptors, IgG/metabolism , Trogocytosis/drug effects , Tumor Microenvironment
7.
Cancer Immunol Res ; 8(1): 120-130, 2020 01.
Article in English | MEDLINE | ID: mdl-31690649

ABSTRACT

Therapeutic monoclonal antibodies (mAb), directed toward either tumor antigens or inhibitory checkpoints on immune cells, are effective in cancer therapy. Increasing evidence suggests that the therapeutic efficacy of these tumor antigen-targeting mAbs is mediated-at least partially-by myeloid effector cells, which are controlled by the innate immune-checkpoint interaction between CD47 and SIRPα. We and others have previously demonstrated that inhibiting CD47-SIRPα interactions can substantially potentiate antibody-dependent cellular phagocytosis and cytotoxicity of tumor cells by IgG antibodies both in vivo and in vitro IgA antibodies are superior in killing cancer cells by neutrophils compared with IgG antibodies with the same variable regions, but the impact of CD47-SIRPα on IgA-mediated killing has not been investigated. Here, we show that checkpoint inhibition of CD47-SIRPα interactions further enhances destruction of IgA antibody-opsonized cancer cells by human neutrophils. This was shown for multiple tumor types and IgA antibodies against different antigens, i.e., HER2/neu and EGFR. Consequently, combining IgA antibodies against HER2/neu or EGFR with SIRPα inhibition proved to be effective in eradicating cancer cells in vivo In a syngeneic in vivo model, the eradication of cancer cells was predominantly mediated by granulocytes, which were actively recruited to the tumor site by SIRPα blockade. We conclude that IgA-mediated tumor cell destruction can be further enhanced by CD47-SIRPα checkpoint inhibition. These findings provide a basis for targeting CD47-SIRPα interactions in combination with IgA therapeutic antibodies to improve their potential clinical efficacy in tumor patients.


Subject(s)
Antineoplastic Agents, Immunological/pharmacology , Breast Neoplasms/immunology , Breast Neoplasms/therapy , CD47 Antigen/antagonists & inhibitors , Immunoglobulin A/immunology , Neutrophils/immunology , Receptors, Immunologic/antagonists & inhibitors , Animals , Antibodies, Monoclonal/pharmacology , Antibody-Dependent Cell Cytotoxicity/immunology , Antigens, Differentiation/immunology , Breast Neoplasms/pathology , CD47 Antigen/immunology , Cell Line, Tumor , ErbB Receptors/antagonists & inhibitors , Female , Humans , Immunotherapy/methods , Mice , Mice, Inbred BALB C , Mice, Inbred NOD , Mice, SCID , Phagocytosis/drug effects , Phagocytosis/immunology , Receptor, ErbB-2/antagonists & inhibitors , Receptors, Immunologic/immunology , Xenograft Model Antitumor Assays
8.
Cell Rep ; 23(13): 3946-3959.e6, 2018 06 26.
Article in English | MEDLINE | ID: mdl-29949776

ABSTRACT

Destruction of cancer cells by therapeutic antibodies occurs, at least in part, through antibody-dependent cellular cytotoxicity (ADCC), and this can be mediated by various Fc-receptor-expressing immune cells, including neutrophils. However, the mechanism(s) by which neutrophils kill antibody-opsonized cancer cells has not been established. Here, we demonstrate that neutrophils can exert a mode of destruction of cancer cells, which involves antibody-mediated trogocytosis by neutrophils. Intimately associated with this is an active mechanical disruption of the cancer cell plasma membrane, leading to a lytic (i.e., necrotic) type of cancer cell death. Furthermore, this mode of destruction of antibody-opsonized cancer cells by neutrophils is potentiated by CD47-SIRPα checkpoint blockade. Collectively, these findings show that neutrophil ADCC toward cancer cells occurs by a mechanism of cytotoxicity called trogoptosis, which can be further improved by targeting CD47-SIRPα interactions.


Subject(s)
Antibody-Dependent Cell Cytotoxicity , Neutrophils/immunology , Animals , Antibodies, Monoclonal/therapeutic use , CD11b Antigen/metabolism , CD18 Antigens/metabolism , CD47 Antigen/metabolism , Cell Line, Tumor , Female , Humans , Male , Melanoma, Experimental/metabolism , Melanoma, Experimental/pathology , Mice , Mice, Inbred C57BL , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/pathology , Receptors, IgG/metabolism , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Transplantation, Homologous
9.
PLoS One ; 8(1): e52143, 2013.
Article in English | MEDLINE | ID: mdl-23320069

ABSTRACT

BACKGROUND: Recent studies show the importance of interactions between CD47 expressed on acute myeloid leukemia (AML) cells and the inhibitory immunoreceptor, signal regulatory protein-alpha (SIRPα) on macrophages. Although AML cells express SIRPα, its function has not been investigated in these cells. In this study we aimed to determine the role of the SIRPα in acute myeloid leukemia. DESIGN AND METHODS: We analyzed the expression of SIRPα, both on mRNA and protein level in AML patients and we further investigated whether the expression of SIRPα on two low SIRPα expressing AML cell lines could be upregulated upon differentiation of the cells. We determined the effect of chimeric SIRPα expression on tumor cell growth and programmed cell death by its triggering with an agonistic antibody in these cells. Moreover, we examined the efficacy of agonistic antibody in combination with established antileukemic drugs. RESULTS: By microarray analysis of an extensive cohort of primary AML samples, we demonstrated that SIRPα is differentially expressed in AML subgroups and its expression level is dependent on differentiation stage, with high levels in FAB M4/M5 AML and low levels in FAB M0-M3. Interestingly, AML patients with high SIRPα expression had a poor prognosis. Our results also showed that SIRPα is upregulated upon differentiation of NB4 and Kasumi cells. In addition, triggering of SIRPα with an agonistic antibody in the cells stably expressing chimeric SIRPα, led to inhibition of growth and induction of programmed cell death. Finally, the SIRPα-derived signaling synergized with the activity of established antileukemic drugs. CONCLUSIONS: Our data indicate that triggering of SIRPα has antileukemic effect and may function as a potential therapeutic target in AML.


Subject(s)
Antigens, Differentiation/metabolism , Apoptosis , Growth Inhibitors/physiology , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Receptors, Immunologic/metabolism , Adult , Antibodies, Monoclonal/administration & dosage , Antigens, Differentiation/genetics , Antineoplastic Agents/administration & dosage , Apoptosis/genetics , Cell Differentiation/genetics , Cell Line, Tumor , Child , Gene Expression Regulation, Neoplastic , Humans , Leukemia, Myeloid, Acute/therapy , Leukemia, Promyelocytic, Acute/metabolism , Leukemia, Promyelocytic, Acute/pathology , Leukemia, Promyelocytic, Acute/therapy , Molecular Targeted Therapy , Prognosis , Receptors, Immunologic/genetics , Signal Transduction/genetics
10.
Cell Rep ; 2(4): 748-55, 2012 Oct 25.
Article in English | MEDLINE | ID: mdl-23022485

ABSTRACT

The phagocyte NADPH oxidase mediates oxidative microbial killing in granulocytes and macrophages. However, because the reactive oxygen species produced by the NADPH oxidase can also be toxic to the host, it is essential to control its activity. Little is known about the endogenous mechanism(s) that limits NADPH oxidase activity. Here, we demonstrate that the myeloid-inhibitory receptor SIRPα acts as a negative regulator of the phagocyte NADPH oxidase. Phagocytes isolated from SIRPα mutant mice were shown to have an enhanced respiratory burst. Furthermore, overexpression of SIRPα in human myeloid cells prevented respiratory burst activation. The inhibitory effect required interactions between SIRPα and its natural ligand, CD47, as well as signaling through the SIRPα cytoplasmic immunoreceptor tyrosine-based inhibitory motifs. Suppression of the respiratory burst by SIRPα was caused by a selective repression of gp91(phox) expression, the catalytic component of the phagocyte NADPH oxidase complex. Thus, SIRPα can limit gp91(phox) expression during myeloid development, thereby controlling the magnitude of the respiratory burst in phagocytes.


Subject(s)
Gene Expression Regulation , Membrane Glycoproteins/metabolism , NADPH Oxidases/metabolism , Phagocytes/enzymology , Receptors, Immunologic/metabolism , Animals , CD47 Antigen/metabolism , Cell Differentiation , Cell Line , Granulocytes/immunology , Granulocytes/metabolism , Humans , Macrophages/immunology , Macrophages/metabolism , Membrane Glycoproteins/genetics , Mice , Mice, Inbred C57BL , Mutation , Myeloid Cells/metabolism , NADPH Oxidase 2 , NADPH Oxidases/genetics , Phagocytosis , Reactive Oxygen Species/metabolism , Receptors, Immunologic/genetics , Respiratory Burst , Signal Transduction
11.
Proc Natl Acad Sci U S A ; 108(45): 18342-7, 2011 Nov 08.
Article in English | MEDLINE | ID: mdl-22042861

ABSTRACT

Monoclonal antibodies are among the most promising therapeutic agents for treating cancer. Therapeutic cancer antibodies bind to tumor cells, turning them into targets for immune-mediated destruction. We show here that this antibody-mediated killing of tumor cells is limited by a mechanism involving the interaction between tumor cell-expressed CD47 and the inhibitory receptor signal regulatory protein-α (SIRPα) on myeloid cells. Mice that lack the SIRPα cytoplasmic tail, and hence its inhibitory signaling, display increased antibody-mediated elimination of melanoma cells in vivo. Moreover, interference with CD47-SIRPα interactions by CD47 knockdown or by antagonistic antibodies against CD47 or SIRPα significantly enhances the in vitro killing of trastuzumab-opsonized Her2/Neu-positive breast cancer cells by phagocytes. Finally, the response to trastuzumab therapy in breast cancer patients appears correlated to cancer cell CD47 expression. These findings demonstrate that CD47-SIRPα interactions participate in a homeostatic mechanism that restricts antibody-mediated killing of tumor cells. This provides a rational basis for targeting CD47-SIRPα interactions, using for instance the antagonistic antibodies against human SIRPα described herein, to potentiate the clinical effects of cancer therapeutic antibodies.


Subject(s)
Antibody-Dependent Cell Cytotoxicity , CD47 Antigen/metabolism , Mammary Neoplasms, Experimental/pathology , Receptors, Immunologic/metabolism , Animals , Antibodies, Monoclonal, Humanized/pharmacology , Antibody-Dependent Cell Cytotoxicity/drug effects , Antineoplastic Agents/pharmacology , CD47 Antigen/immunology , Female , Flow Cytometry , Mammary Neoplasms, Experimental/immunology , Mammary Neoplasms, Experimental/metabolism , Mice , Mice, Inbred C57BL , Receptors, Immunologic/immunology , Signal Transduction , Trastuzumab
12.
Blood ; 113(4): 887-92, 2009 Jan 22.
Article in English | MEDLINE | ID: mdl-18849484

ABSTRACT

The plasma membrane glycoprotein receptor CD163 is a member of the scavenger receptor cystein-rich (SRCR) superfamily class B that is highly expressed on resident tissue macrophages in vivo. Previously, the molecule has been shown to act as a receptor for hemoglobin-haptoglobin complexes and to mediate cell-cell interactions between macrophages and developing erythroblasts in erythroblastic islands. Here, we provide evidence for a potential role for CD163 in host defense. In particular, we demonstrate that CD163 can function as a macrophage receptor for bacteria. CD163 was shown to bind both Gram-positive and -negative bacteria, and a previously identified cell-binding motif in the second scavenger domain of CD163 was sufficient to mediate this binding. Expression of CD163 in monocytic cells promoted bacteria-induced proinflammatory cytokine production. Finally, newly generated antagonistic antibodies against CD163 were able to potently inhibit cytokine production elicited by bacteria in freshly isolated human monocytes. These findings identify CD163 as a macrophage receptor for bacteria and suggest that, during bacterial infection, CD163 on resident tissue macrophages acts as an innate immune sensor and inducer of local inflammation.


Subject(s)
Antigens, CD/immunology , Antigens, Differentiation, Myelomonocytic/immunology , Escherichia coli/immunology , Immunity, Innate/immunology , Receptors, Cell Surface/immunology , Receptors, Scavenger/immunology , Staphylococcus aureus/immunology , Streptococcus mutans/immunology , Amino Acid Sequence , Animals , Antigens, CD/chemistry , Antigens, CD/genetics , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/chemistry , Antigens, Differentiation, Myelomonocytic/genetics , Antigens, Differentiation, Myelomonocytic/metabolism , Cells, Cultured , Cricetinae , Cytokines/biosynthesis , Cytokines/immunology , Humans , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Receptors, Scavenger/genetics , Receptors, Scavenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...