Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Environ Pollut ; 356: 124312, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38852661

ABSTRACT

Neonicotinoid insecticides specifically target insect subtypes of nicotinic acetylcholine receptors. Acetamiprid (ACE: C10H11ClN4), the neonicotinoid insecticide, is used to control crop insect pests worldwide. It is a nitrile, monochloropyridine, and carboxamidine that is highly soluble and accessible to waterways. There, it causes neurotoxic and oxidative perturbance to non-target organisms. The unionid mussel Chamabradia rubens is a common Northern River Nile suspension feeder. The current study aimed to assess ACE filtration from waters by C. rubens, and whether this biological power can reduce ACE effects on fish. Removal of ACE by C. rubens was assessed using LC-MS/MS. Zebrafish Danio rerio adults were exposed to different sublethal doses of ACE in the presence or absence of C. rubens in their aquaria. The results showed that mussels could remove significant ACE amounts from water, where it accumulated mostly in the digestive gland. The presence of C.rubens in zebrafish aquaria having ACE was accompanied by significant upregulation of antioxidant enzyme gene transcripts and total H2O2 scavenging, in contrast to mussel-free ACE-exposed groups. Meanwhile, liver triglycerides rose 5-6-fold in response to ACE in the "Fish-Only" groups, indicating an ACE-induced hepatotoxicity. Also, Insulin-like growth factor 1 (igf1) and fish body mass increased more in "Fish + Mussel" groups than in the "Fish-Only" ones. In aggregate, these findings suggest that the Nile mussel could reduce the oxidative stress and metabolic changes induced in fish by ACE. This can contribute valuable environmental and economic benefits upon the use of this mussel as a biofilter.

2.
Food Chem Toxicol ; : 114839, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38942165

ABSTRACT

The human gut microbiome plays a crucial role in immune function. The synbiotic consortium or Defined Microbial Assemblage™ (DMA™) Medical Food product, SBD121, consisting of probiotic microbes and prebiotic fibers was designed for the clinical dietary management of rheumatoid arthritis. A 28-day repeated administration study was performed to evaluate the oral toxicity of SBD121 in male and female rats (age/weight at study start: 60 days/ 156-264 grams) administered levels of 0, 4.96 x 1010, 2.48 x 1011, or 4.96 x 1011 colony forming units (CFU)/kg-bw. No treatment related changes in ophthalmological effects, mortality, morbidity, general health and clinical observations, urinalysis, hematology, serum chemistry, absolute or relative organ weights, gross necropsy, or histopathology. A significant decrease in body weight was reported in females in the low and high-concentration groups, which corresponded in part with a significant decrease in food consumption. Results of the functional observation battery indicated front grip strength was significantly greater in the high-concentration males compared to the controls; however, this effect was not considered adverse. Based on these findings, the administration of the Medical Food SBD121 to male and female rats has a no-observable adverse effect level (NOAEL) at the highest level tested of 4.96 x 1011 CFU/kg-bw.

3.
J Invertebr Pathol ; 204: 108118, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679369

ABSTRACT

Portunid crabs are distributed worldwide and highly valued in aquaculture. Viral infections are the main limiting factor for the survival of these animals and, consequently, for the success of commercial-scale cultivation. However, there is still a lack of knowledge about the viruses that infect cultured portunid crabs worldwide. Herein, the genome sequence and phylogeny of Callinectes sapidus reovirus 2 (CsRV2) are described, and the discovery of a new bunyavirus in Callinectes danae cultured in southern Brazil is reported. The CsRV2 genome sequence consists of 12 dsRNA segments (20,909 nt) encode 13 proteins. The predicted RNA-dependent RNA polymerase (RdRp) shows a high level of similarity with that of Eriocheir sinensis reovirus 905, suggesting that CsRV2 belongs to the genus Cardoreovirus. The CsRV2 particles are icosahedral, measuring approximately 65 nm in diameter, and exhibit typical non-turreted reovirus morphology. High throughput sequencing data revealed the presence of an additional putative virus genome similar to bunyavirus, called Callinectes danae Portunibunyavirus 1 (CdPBV1). The CdPBV1 genome is tripartite, consisting of 6,654 nt, 3,120 nt and 1,656 nt single-stranded RNA segments that each encode a single protein. Each segment has a high identity with European shore crab virus 1, suggesting that CdPBV1 is a new representative of the family Cruliviridae. The putative spherical particles of CdPBV1 measure ∼120 nm in diameter and present a typical bunyavirus morphology. The results of the histopathological analysis suggest that these new viruses can affect the health and, consequently, the survival of C. danae in captivity. Therefore, the findings reported here should be used to improve prophylactic and pathogen control practices and contribute to the development and optimization of the production of soft-shell crabs on a commercial scale in Brazil.


Subject(s)
Brachyura , Genome, Viral , Phylogeny , Reoviridae , Animals , Brachyura/virology , Reoviridae/genetics , Reoviridae/classification , Orthobunyavirus/genetics , Aquaculture
4.
J Invertebr Pathol ; 201: 107987, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37634623

ABSTRACT

A reo-like virus, CsRV1, is found in blue crabs, Callinectes sapidus, from every North American location assessed, including Chesapeake Bay and the Atlantic and Gulf coasts, USA and associated with blue crabs in softshell production. CsRV1-associated crab mortality is prevalent in captive crabs, but it is still unknown how CsRV1 is transmitted. The purpose of this study was to examine the role that conspecific predation or scavenging may play in per os transmission in single exposure and repeated exposure experiments. For viruses without cell culture propagation, repeated exposure experiments have the challenge of presenting the virus consistently during the experiment and across time replicates. In a single-exposure experiment, none of the crabs fed muscle tissue of crabs carrying intense infections of CsRV1 developed CsRV1 infections. In a repeated-exposure trial, using infected muscle tissue prepared in alginate blocks, CsRV1 was detected in 11% of the crabs fed infected tissue but was not significantly different from the control group fed alginate lacking CsRV1. For repeated per os exposure experiments, the study demonstrated the utility of using alginate to present the same homogenous sample of virus, both injected and per os, over time for oral challenge experiments. Conspecific predation and scavenging could be a transmission route, but future work into this and other possible routes of transmission for CsRV1 is important to better understand the role this virus plays in wild crab populations and the soft-shell crab industry.


Subject(s)
Brachyura , Animals , Alginates
5.
Sci Total Environ ; 877: 162669, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36907411

ABSTRACT

Floating Treatment Wetlands (FTWs) are an emerging ecological engineering technology being applied the restoration of eutrophic urban water bodies. Documented water-quality benefits of FTW include nutrient removal, transformation of pollutants, and reduction in bacterial contamination. However, translating findings from short-duration lab and mesocosm scale experiments, into sizing criteria that might be applied to field installations is not straightforward. This study presents the results of three well established (>3 years) pilot-scale (40-280 m2) FTW installations in Baltimore, Boston, and Chicago. We quantify annual phosphorus removal through harvesting of above-ground vegetation and find an average removal rate of 2 g-P m-2. In our own study and in a review of literature, we find limited evidence of enhanced sedimentation as a pathway for phosphorus removal. In addition to water-quality benefits, FTW planted with native species, provide valuable wetland habitat; and theoretically improve ecological function. We document efforts to quantify the local effect of FTW installations on benthic and sessile macroinvertebrates, zooplankton, bloom-forming cyanobacteria, and fish. Data from these three projects suggest that, even on a small scale, FTW produce localized changes in biotic structure that reflect improving environmental quality. This study provides a simple and defensible method for sizing FTW for nutrient removal in eutrophic waterbodies. We propose several key research pathways which would advance our understanding of the effects FTW have on the ecosystem they are deployed in.


Subject(s)
Water Pollutants, Chemical , Wetlands , Ecosystem , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis , Nitrogen/analysis , Phosphorus/metabolism , Water
6.
Viruses ; 15(2)2023 02 18.
Article in English | MEDLINE | ID: mdl-36851777

ABSTRACT

The movement of viruses in aquatic systems is rarely studied over large geographic scales. Oceanic currents, host migration, latitude-based variation in climate, and resulting changes in host life history are all potential drivers of virus connectivity, adaptation, and genetic structure. To expand our understanding of the genetic diversity of Callinectes sapidus reovirus 1 (CsRV1) across a broad spatial and host life history range of its blue crab host (Callinectes sapidus), we obtained 22 complete and 96 partial genomic sequences for CsRV1 strains from the US Atlantic coast, Gulf of Mexico, Caribbean Sea, and the Atlantic coast of South America. Phylogenetic analyses of CsRV1 genomes revealed that virus genotypes were divided into four major genogroups consistent with their host geographic origins. However, some CsRV1 sequences from the US mid-Atlantic shared high genetic similarity with the Gulf of Mexico genotypes, suggesting potential human-mediated movement of CsRV1 between the US mid-Atlantic and Gulf coasts. This study advances our understanding of how climate, coastal geography, host life history, and human activity drive patterns of genetic structure and diversity of viruses in marine animals and contributes to the capacity to infer broadscale host population connectivity in marine ecosystems from virus population genetic data.


Subject(s)
Brachyura , Orthoreovirus, Mammalian , Reoviridae , Animals , Humans , Ecosystem , Phylogeny , Genetic Structures , Genetic Variation
7.
Food Chem Toxicol ; 168: 113329, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35948142

ABSTRACT

The human gut microbiome plays a crucial role in skeletal homeostasis. The synbiotic consortium or Defined Microbial Assemblage™ (DMA™) food product, SBD111, consisting of probiotic microbes and prebiotic fibers was designed to promote bone health based on its capacity to produce short chain fatty acids (SCFA), the presence of genes for vitamin K2 production, and its ability to degrade plant fibers. A 28-day repeated administration study was performed to evaluate the oral toxicity of SBD111 in female rats (age/weight at study start: 5-7 weeks/120-180 g) administered levels of 0, 2.0 x 1010, 9.8 x 1010, or 2.0 x 1011 colony forming units (CFU)/kg-bw. No mortality or morbidity occurred during the study. There were no significant differences in body weights, hematology, serum chemistry, coagulation, organ weights, or food consumption in the test groups compared to the controls. Liver weight to body weight ratios were signficantly decreased at 9.8 x 1010 CFU/kg-bw when compared to controls. No treatment related changes in motor activity, sensory stimuli, or grip strength were observed. Based on these findings, SBD111 administered to female rats has a no-observable adverse effect level (NOAEL) at the highest level tested of 2.0 x 1011 CFU/kg-bw.


Subject(s)
Probiotics , Synbiotics , Animals , Food Safety , Humans , Infant , No-Observed-Adverse-Effect Level , Rats , Vitamin K 2
8.
Front Microbiol ; 13: 855750, 2022.
Article in English | MEDLINE | ID: mdl-35369474

ABSTRACT

The advancement of high throughput sequencing has greatly facilitated the exploration of viruses that infect marine hosts. For example, a number of putative virus genomes belonging to the Totiviridae family have been described in crustacean hosts. However, there has been no characterization of the most newly discovered putative viruses beyond description of their genomes. In this study, two novel double-stranded RNA (dsRNA) virus genomes were discovered in the Atlantic blue crab (Callinectes sapidus) and further investigated. Sequencing of both virus genomes revealed that they each encode RNA dependent RNA polymerase proteins (RdRps) with similarities to toti-like viruses. The viruses were tentatively named Callinectes sapidus toti-like virus 1 (CsTLV1) and Callinectes sapidus toti-like virus 2 (CsTLV2). Both genomes have typical elements required for -1 ribosomal frameshifting, which may induce the expression of an encoded ORF1-ORF2 (gag-pol) fusion protein. Phylogenetic analyses of CsTLV1 and CsTLV2 RdRp amino acid sequences suggested that they are members of two new genera in the family Totiviridae. The CsTLV1 and CsTLV2 genomes were detected in muscle, gill, and hepatopancreas of blue crabs by real-time reverse transcription quantitative PCR (RT-qPCR). The presence of ~40 nm totivirus-like viral particles in all three tissues was verified by transmission electron microscopy, and pathology associated with CsTLV1 and CsTLV2 infections were observed by histology. PCR assays showed the prevalence and geographic range of these viruses, to be restricted to the northeast United States sites sampled. The two virus genomes co-occurred in almost all cases, with the CsTLV2 genome being found on its own in 8.5% cases, and the CsTLV1 genome not yet found on its own. To our knowledge, this is the first report of toti-like viruses in C. sapidus. The information reported here provides the knowledge and tools to investigate transmission and potential pathogenicity of these viruses.

9.
J Invertebr Pathol ; 190: 107739, 2022 05.
Article in English | MEDLINE | ID: mdl-35248555

ABSTRACT

Crabs can be infected by a variety of pathogenic micro-organisms but the most damaging are viruses. Naturally-occurring Callinectes sapidus reovirus 1 (CsRV1) is thought to contribute to mortality of Callinectes sapidus in soft crab culture in the USA. In Brazil, soft crabs are frequently produced using Callinectes danae, which suffers a similar rate of mortality in culture as C. sapidus. This study investigated whether CsRV1 could be detected in healthy or dead Callinectes danae from Paraná, Brazil and kept in captivity, we also evaluated the relationship between viral infection, and biochemical and behavioral parameters. C. danae from Paranaguá Bay were kept in a recirculation system for 14 days and subjected to weekly biochemical analyses and a reflex action mortality predictors (RAMP) test. RT-qPCR assays for CsRV1 were negative for all samples. However, electrophoretic analysis of extracted RNA from some crabs showed a pattern of 12 dsRNA bands that indicated intense infection by a reovirus with a genome organization different from CsRV1. The banding pattern was indistinguishable from a putative novel reovirus detected in C. sapidus in Rio Grande do Sul, Brazil, provisionally called CsRV2. The prevalence of dsRNA of CsRV2 showed no significant difference between crabs that died and survived. Interestingly, the presence of CsRV2 dsRNA was correlated with a significant reduction in glycogen concentration in hepatopancreas and a decrease in reflex action. The results obtained in this study are an early glimpse of the occurrence of reoviruses in C. danae and their potential effects in soft-shell crab systems in Brazil.


Subject(s)
Brachyura , Reoviridae , Animals , Brazil/epidemiology , Hepatopancreas , Prevalence , RNA, Double-Stranded
10.
Am J Physiol Endocrinol Metab ; 322(4): E344-E354, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35156423

ABSTRACT

The gut microbiome has the capacity to regulate bone mass. The aim of this study was to develop a nutritional synbiotic dietary assemblage at an optimal dose to maintain bone mass in ovariectomized (Ovx) mice. We performed genomic analyses and in vitro experiments in a large collection of bacterial and fungal strains (>4,000) derived from fresh fruit and vegetables to identify candidates with the synergistic capacity to produce bone-protective short-chain fatty acids (SCFA) and vitamin K2. The candidate SBD111-A, composed of Lactiplantibacillus plantarum, Levilactobacillus brevis, Leuconostoc mesenteroides, Pseudomonas fluorescens, and Pichia kudriavzevii together with prebiotic dietary fibers, produced high levels of SCFA in vitro and protected against Ovx-induced trabecular bone loss in a dose-dependent manner in mice. Metagenomic sequencing revealed that SBD111-A changed the taxonomic composition and enriched specific pathways for synthesis of bone-protective SCFA, vitamin K2, and branched-chain amino acids in the gut microbiome.NEW & NOTEWORTHY We performed genomic analyses and in vitro experiments in a collection of bacterial and fungal strains. We identified a combination (SBD111-A) that produced high levels of SCFA in vitro and protected against ovariectomy-induced bone loss in a dose-dependent manner in mice. Metagenomic sequencing revealed that SBD111-A changed the taxonomic composition and function of the gut microbiome and enriched pathways for synthesis of bone-protective SCFA, vitamin K2, and branched-chain amino acids.


Subject(s)
Cancellous Bone , Synbiotics , Amino Acids, Branched-Chain , Animals , Bacteria , Fatty Acids, Volatile , Female , Humans , Mice , Ovariectomy , Vitamin K 2
11.
Ambio ; 51(4): 888-900, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34374954

ABSTRACT

Food webs in urban estuaries support valuable ecosystem services that are subject to a wide range of stressors that can degrade the structure of trophic networks. Multiple trophic pathways stabilize food webs by providing complementary diet resources for consumers but the consequences of urbanization on estuarine food webs are relatively unknown. In estuarine creeks across an urban-to-suburban gradient, we demonstrate trophic decoupling of benthic and pelagic pathways, trophic niche contraction, and increasing human health risk arising with the same factors that are associated with ecological degradation. This suggests an urban estuarine paradox-human activities often create larger volumes of deep water habitat, yet human activities also render much of this area unproductive with measurable opportunity costs to food webs. Our findings emphasize the shared consequences of environmental degradation for the ecological integrity of urban estuaries and the health of urban communities that rely on estuaries for sustenance.


Subject(s)
Ecosystem , Food Chain , Estuaries , Humans
12.
Sci Rep ; 11(1): 24017, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34911987

ABSTRACT

Plant microbiomes have been extensively studied for their agricultural relevance on growth promotion and pathogenesis, but little is known about their role as part of the diet when fresh fruits and vegetables are consumed raw. Most studies describing these communities are based on 16S rRNA gene amplicon surveys, limiting our understanding of the taxonomic resolution at the species level and functional capabilities. In this study, we characterized microbes colonizing tomatoes, spinach, brined olives, and dried figs using shotgun metagenomics. We recovered metagenome-assembled genomes of novel lactic acid bacteria from green olives and identified high intra- and inter-specific diversity of Pseudomonas in tomatoes. All samples were colonized by Pseudomonas, consistent with other reports with distinct community structure. Functional characterization showed the presence of enzymes involved in vitamin and short chain fatty acid metabolism and degradation of diverse carbohydrate substrates including plant fibers. The dominant bacterial members were isolated, sequenced, and mapped to its metagenome confirming their identity and indicating the microbiota is culturable. Our results reveal high genetic diversity, previously uncultured genera, and specific functions reflecting a likely plant host association. This study highlights the potential that plant microbes can play when consumed as part of our diet and proposes these as transient contributors to the gut microbiome.


Subject(s)
Biodiversity , Host Microbial Interactions , Metagenome , Metagenomics , Microbiota , Plants, Edible/microbiology , Computational Biology/methods , Food Microbiology , Genetic Variation , Humans , Metagenomics/methods , Molecular Sequence Annotation , Phylogeny
13.
J Invertebr Pathol ; 182: 107568, 2021 06.
Article in English | MEDLINE | ID: mdl-33711318

ABSTRACT

A variety of reoviruses have been described in crustacean hosts, including shrimp, crayfish, prawn, and especially in crabs. However, only one genus of crustacean reovirus - Cardoreovirus - has been formally recognized by ICTV (International Committee on Taxonomy of Viruses) and most crustacean reoviruses remain unclassified. This arises in part from ambiguous or incomplete information on which to categorize them. In recent years, increased availability of crustacean reovirus genomic sequences is making the discovery and classification of crustacean reoviruses faster and more certain. This minireview describes the properties of the reoviruses infecting crustaceans and suggests an overall classification of brachyuran crustacean reoviruses based on a combination of morphology, host, genome organization pattern and phylogenetic sequence analysis.


Subject(s)
Crustacea/virology , Reoviridae/classification , Animals , Phylogeny , Reoviridae/genetics
14.
Sci Transl Med ; 13(580)2021 02 10.
Article in English | MEDLINE | ID: mdl-33568523

ABSTRACT

Osteoarthritis (OA) is a debilitating joint disease characterized by progressive cartilage degeneration, with no available disease-modifying therapy. OA is driven by pathological chondrocyte hypertrophy (CH), the cellular regulators of which are unknown. We have recently reported the therapeutic efficacy of G protein-coupled receptor kinase 2 (GRK2) inhibition in other diseases by recovering protective G protein-coupled receptor (GPCR) signaling. However, the role of GPCR-GRK2 pathway in OA is unknown. Thus, in a surgical OA mouse model, we performed genetic GRK2 deletion in chondrocytes or pharmacological inhibition with the repurposed U.S. Food and Drug Administration (FDA)-approved antidepressant paroxetine. Both GRK2 deletion and inhibition prevented CH, abated OA progression, and promoted cartilage regeneration. Supporting experiments with cultured human OA cartilage confirmed the ability of paroxetine to mitigate CH and cartilage degradation. Our findings present elevated GRK2 signaling in chondrocytes as a driver of CH in OA and identify paroxetine as a disease-modifying drug for OA treatment.


Subject(s)
Cartilage, Articular , Osteoarthritis , Animals , Cartilage , Chondrocytes , G-Protein-Coupled Receptor Kinase 2 , Mice , Osteoarthritis/drug therapy , Paroxetine/pharmacology , Paroxetine/therapeutic use
15.
Microbiol Resour Announc ; 10(1)2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33414308

ABSTRACT

This report describes the sequence of a reovirus genome, discovered in Callinectes sapidus in Brazil. The genome sequence of Callinectes sapidus reovirus 2 (CsRV2) consists of 12 segments that encode 13 putative proteins. The predicted RNA-dependent RNA polymerase is highly similar to that of Eriocheir sinensis reovirus 905, suggesting that CsRV2 also belongs to the genus Cardoreovirus.

16.
Nutrients ; 12(7)2020 Jul 09.
Article in English | MEDLINE | ID: mdl-32660025

ABSTRACT

Early treatment may prevent or delay the onset of type 2 diabetes mellitus (T2DM) in individuals who are at high risk. Lifestyle interventions and the hypoglycemic drug metformin have been shown to reduce T2DM incidence. The effectiveness of such interventions may be enhanced by targeting environmental factors such as the intestinal microbiota, which has been proven to predict the response to lifestyle interventions and play a part in mediating the glucose-lowering effects of metformin. Shifts in the intestinal microbiota "towards a more balanced state" may promote glucose homeostasis by regulating short-chain fatty acids' production. This study aimed to investigate the safety and effect of a multi-strain probiotic on glycemic, inflammatory, and permeability markers in adults with prediabetes and early T2DM and to assess whether the probiotic can enhance metformin's effect on glycaemia. A randomised controlled pilot study was conducted in 60 adults with a BMI ≥ 25 kg/m2 and with prediabetes or T2DM (within the previous 12 months). The participants were randomised to a multi-strain probiotic (L. plantarum, L. bulgaricus, L. gasseri, B. breve, B. animalis sbsp. lactis, B. bifidum, S. thermophilus, and S. boulardii) or placebo for 12 weeks. Analyses of the primary outcome (fasting plasma glucose) and secondary outcomes, including, but not limited to, circulating lipopolysaccharide, zonulin, and short chain fatty acids and a metagenomic analysis of the fecal microbiome were performed at baseline and 12 weeks post-intervention. The results showed no significant differences in the primary and secondary outcome measures between the probiotic and placebo group. An analysis of a subgroup of participants taking metformin showed a decrease in fasting plasma glucose, HbA1c, insulin resistance, and zonulin; an increase in plasma butyrate concentrations; and an enrichment of microbial butyrate-producing pathways in the probiotic group but not in the placebo group. Probiotics may act as an adjunctive to metformin by increasing the production of butyrate, which may consequently enhance glucose management.


Subject(s)
Blood Glucose/analysis , Diabetes Mellitus, Type 2/blood , Gastrointestinal Microbiome , Hypoglycemic Agents/administration & dosage , Metformin/administration & dosage , Probiotics/administration & dosage , Aged , Bacteroidetes/physiology , Butyrates/blood , Fatty Acids, Volatile/blood , Female , Firmicutes/physiology , Gastrointestinal Microbiome/drug effects , Haptoglobins , Humans , Insulin Resistance , Male , Metabolic Networks and Pathways/drug effects , Middle Aged , Pilot Projects , Prediabetic State/blood , Probiotics/adverse effects , Probiotics/pharmacology , Protein Precursors/blood , Proteobacteria/physiology
17.
Curr Opin Rheumatol ; 32(1): 92-101, 2020 01.
Article in English | MEDLINE | ID: mdl-31724973

ABSTRACT

PURPOSE OF REVIEW: Osteoarthritis is a debilitating disease leading to joint degeneration, inflammation, pain, and disability. Despite efforts to develop a disease modifying treatment, the only accepted and available clinical approaches involve palliation. Although many factors contribute to the development of osteoarthritis, the gut microbiome has recently emerged as an important pathogenic factor in osteoarthritis initiation and progression. This review examines the literature to date regarding the link between the gut microbiome and osteoarthritis. RECENT FINDINGS: Studies showing correlations between serum levels of bacterial metabolites and joint degeneration were the first links connecting a dysbiosis of the gut microbiome with osteoarthritis. Further investigations have demonstrated that microbial community shifts induced by antibiotics, a germ-free environment or high-fat are important underlying factors in joint homeostasis and osteoarthritis. It follows that strategies to manipulate the microbiome have demonstrated efficacy in mitigating joint degeneration in osteoarthritis. Moreover, we have observed that dietary supplementation with nutraceuticals that are joint protective may exert their influence via shifts in the gut microbiome. SUMMARY: Although role of the microbiome in osteoarthritis is an area of intense study, no clear mechanism of action has been determined. Increased understanding of how the two factors interact may provide mechanistic insight into osteoarthritis and lead to disease modifying treatments.


Subject(s)
Dysbiosis/complications , Gastrointestinal Microbiome/physiology , Inflammation/microbiology , Osteoarthritis/microbiology , Dysbiosis/metabolism , Dysbiosis/microbiology , Humans , Inflammation/metabolism , Osteoarthritis/metabolism
18.
PLoS One ; 14(9): e0221355, 2019.
Article in English | MEDLINE | ID: mdl-31483804

ABSTRACT

Increased use of salting to de-ice roadways, especially in urban areas, is leading to elevated salinity levels in soil as well as surface- and ground water. This salt pollution may cause long-term ecological changes to soil and aquatic microbial communities. In this study, we examined the impact on microbial communities in soils exposed to urban road salt runoff using both culturing and 16S amplicon sequencing. Both methods showed an increase in halophilic Bacteria and Archaea in samples from road salt-exposed areas and suggested that halophiles are becoming persistent members of microbial communities in urban, road salt-impacted soils. Since salt is a pollutant that can accumulate in soils over time, it is critical to begin assessing its impact on the environment immediately. Toward this goal, we have developed a facile semi-quantitative assay utilizing halophilic microbes as biomarkers to evaluate on-going salt pollution of soils.


Subject(s)
Archaea/drug effects , Bacteria/drug effects , Salts/toxicity , Archaea/genetics , Archaea/isolation & purification , Bacteria/genetics , Bacteria/isolation & purification , Environmental Monitoring , RNA, Ribosomal, 16S/chemistry , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Soil/chemistry , Soil Microbiology , Soil Pollutants/analysis , Soil Pollutants/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
19.
BMC Evol Biol ; 19(1): 146, 2019 07 19.
Article in English | MEDLINE | ID: mdl-31324143

ABSTRACT

BACKGROUND: Antioxidative enzymes contribute to a parasite's ability to counteract the host's intracellular killing mechanisms. The facultative intracellular oyster parasite, Perkinsus marinus, a sister taxon to dinoflagellates and apicomplexans, is responsible for mortalities of oysters along the Atlantic coast of North America. Parasite trophozoites enter molluscan hemocytes by subverting the phagocytic response while inhibiting the typical respiratory burst. Because P. marinus lacks catalase, the mechanism(s) by which the parasite evade the toxic effects of hydrogen peroxide had remained unclear. We previously found that P. marinus displays an ascorbate-dependent peroxidase (APX) activity typical of photosynthetic eukaryotes. Like other alveolates, the evolutionary history of P. marinus includes multiple endosymbiotic events. The discovery of APX in P. marinus raised the questions: From which ancestral lineage is this APX derived, and what role does it play in the parasite's life history? RESULTS: Purification of P. marinus cytosolic APX activity identified a 32 kDa protein. Amplification of parasite cDNA with oligonucleotides corresponding to peptides of the purified protein revealed two putative APX-encoding genes, designated PmAPX1 and PmAPX2. The predicted proteins are 93% identical, and PmAPX2 carries a 30 amino acid N-terminal extension relative to PmAPX1. The P. marinus APX proteins are similar to predicted APX proteins of dinoflagellates, and they more closely resemble chloroplastic than cytosolic APX enzymes of plants. Immunofluorescence for PmAPX1 and PmAPX2 shows that PmAPX1 is cytoplasmic, while PmAPX2 is localized to the periphery of the central vacuole. Three-dimensional modeling of the predicted proteins shows pronounced differences in surface charge of PmAPX1 and PmAPX2 in the vicinity of the aperture that provides access to the heme and active site. CONCLUSIONS: PmAPX1 and PmAPX2 phylogenetic analysis suggests that they are derived from a plant ancestor. Plant ancestry is further supported by the presence of ascorbate synthesis genes in the P. marinus genome that are similar to those in plants. The localizations and 3D structures of the two APX isoforms suggest that APX fulfills multiple functions in P. marinus within two compartments. The possible role of APX in free-living and parasitic stages of the life history of P. marinus is discussed.


Subject(s)
Antioxidants/metabolism , Ascorbate Peroxidases/metabolism , Catalase/metabolism , Parasites/enzymology , Photosynthesis , Amino Acid Sequence , Animals , Ascorbate Peroxidases/chemistry , Ascorbate Peroxidases/genetics , Ascorbate Peroxidases/isolation & purification , Hydrogen Peroxide/metabolism , Kinetics , Models, Molecular , Parasites/genetics , Phylogeny , Structural Homology, Protein , Subcellular Fractions/metabolism
20.
Heliyon ; 5(3): e01294, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30923762

ABSTRACT

PAK6 is a Group II p21 activated kinase that unlike traditional signal transduction proteins interacts with multiple binding partners including sex-steroid receptors. PAK6 acts as a nodal checkpoint integrating multiple cellular inputs to promote distinct cellular outcomes, some of which are associated with cytoskeletal remodeling. Despite the possibility that PAK6 may couple sex-specific neuronal function and therefore serve as a valuable research, diagnostic and therapeutic target, there is currently no standardized protocol for assessing PAK6 activity in a neuronal cell line. Here, we present a protocol for assessing PAK6 levels in a commonly used neuronal cell line, PC-12. In comparison with other methodology, this approach (1) does not require ex-planted tissue to identify PAK6 in neurons and (2) unlike other protocols which require steroid depleted media for detection of PAK6 in non-neuronal cell lines, such as prostate cancer cell lines, we were easily able to detect PAK6 in PC-12 cells grown in complete, steroid-containing media. Thus the present protocol allows for the efficient detection of native PAK6 in PC-12 cells to expedite targeted basic research of the emerging importance of PAK6 function in the brain as well as to accelerate the identification and isolation of potential therapeutic targets not only in cancerous but brain disease states as well.

SELECTION OF CITATIONS
SEARCH DETAIL
...