Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
2.
Pediatr Obes ; 18(7): e13035, 2023 07.
Article in English | MEDLINE | ID: mdl-37026509

ABSTRACT

Exposure to intrapartum antibiotic prophylaxis to reduce perinatal group B streptococcal disease was associated with increased childhood body mass index (BMI) persisting to age 10 years compared to no exposure (Δ BMI at 10 years: vaginal delivery 0.14 kg/m2 , caesarean 0.40 kg/m2 ).


Subject(s)
Anti-Bacterial Agents , Streptococcal Infections , Pregnancy , Female , Child , Humans , Body Mass Index , Streptococcal Infections/drug therapy , Streptococcal Infections/prevention & control , Antibiotic Prophylaxis , Streptococcus agalactiae
4.
J Infect Dis ; 227(7): 907-916, 2023 04 12.
Article in English | MEDLINE | ID: mdl-36723871

ABSTRACT

BACKGROUND: Descriptions of changes in invasive bacterial disease (IBD) epidemiology during the coronavirus disease 2019 (COVID-19) pandemic in the United States are limited. METHODS: We investigated changes in the incidence of IBD due to Streptococcus pneumoniae, Haemophilus influenzae, group A Streptococcus (GAS), and group B Streptococcus (GBS). We defined the COVID-19 pandemic period as 1 March to 31 December 2020. We compared observed IBD incidences during the pandemic to expected incidences, consistent with January 2014 to February 2020 trends. We conducted secondary analysis of a health care database to assess changes in testing by blood and cerebrospinal fluid (CSF) culture during the pandemic. RESULTS: Compared with expected incidences, the observed incidences of IBD due to S. pneumoniae, H. influenzae, GAS, and GBS were 58%, 60%, 28%, and 12% lower during the pandemic period of 2020, respectively. Declines from expected incidences corresponded closely with implementation of COVID-19-associated nonpharmaceutical interventions (NPIs). Significant declines were observed across all age and race groups, and surveillance sites for S. pneumoniae and H. influenzae. Blood and CSF culture testing rates during the pandemic were comparable to previous years. CONCLUSIONS: NPIs likely contributed to the decline in IBD incidence in the United States in 2020; observed declines were unlikely to be driven by reductions in testing.


Subject(s)
Bacterial Infections , COVID-19 , United States/epidemiology , Humans , Infant , Incidence , Pandemics , COVID-19/epidemiology , Streptococcus pneumoniae , Haemophilus influenzae , Streptococcus agalactiae
5.
MMWR Morb Mortal Wkly Rep ; 71(48): 1526-1530, 2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36454688

ABSTRACT

On September 1, 2022, bivalent COVID-19 mRNA vaccines, composed of components from the SARS-CoV-2 ancestral and Omicron BA.4/BA.5 strains, were recommended by the Advisory Committee on Immunization Practices (ACIP) to address reduced effectiveness of COVID-19 monovalent vaccines during SARS-CoV-2 Omicron variant predominance (1). Initial recommendations included persons aged ≥12 years (Pfizer-BioNTech) and ≥18 years (Moderna) who had completed at least a primary series of any Food and Drug Administration-authorized or -approved monovalent vaccine ≥2 months earlier (1). On October 12, 2022, the recommendation was expanded to include children aged 5-11 years. At the time of recommendation, immunogenicity data were available from clinical trials of bivalent vaccines composed of ancestral and Omicron BA.1 strains; however, no clinical efficacy data were available. In this study, effectiveness of the bivalent (Omicron BA.4/BA.5-containing) booster formulation against symptomatic SARS-CoV-2 infection was examined using data from the Increasing Community Access to Testing (ICATT) national SARS-CoV-2 testing program.* During September 14-November 11, 2022, a total of 360,626 nucleic acid amplification tests (NAATs) performed at 9,995 retail pharmacies for adults aged ≥18 years, who reported symptoms consistent with COVID-19 at the time of testing and no immunocompromising conditions, were included in the analysis. Relative vaccine effectiveness (rVE) of a bivalent booster dose compared with that of ≥2 monovalent vaccine doses among persons for whom 2-3 months and ≥8 months had elapsed since last monovalent dose was 30% and 56% among persons aged 18-49 years, 31% and 48% among persons aged 50-64 years, and 28% and 43% among persons aged ≥65 years, respectively. Bivalent mRNA booster doses provide additional protection against symptomatic SARS-CoV-2 in immunocompetent persons who previously received monovalent vaccine only, with relative benefits increasing with time since receipt of the most recent monovalent vaccine dose. Staying up to date with COVID-19 vaccination, including getting a bivalent booster dose when eligible, is critical to maximizing protection against COVID-19 (1).


Subject(s)
COVID-19 , SARS-CoV-2 , Adolescent , Adult , Child , Humans , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Testing , COVID-19 Vaccines , mRNA Vaccines , RNA, Messenger , United States/epidemiology , Vaccines, Combined
6.
BMJ Glob Health ; 7(11)2022 11.
Article in English | MEDLINE | ID: mdl-36319031

ABSTRACT

OBJECTIVE: Risk factors predisposing infants to community-acquired bacterial infections during the first 2 months of life are poorly understood in South Asia. Identifying risk factors for infection could lead to improved preventive measures and antibiotic stewardship. METHODS: Five sites in Bangladesh, India and Pakistan enrolled mother-child pairs via population-based pregnancy surveillance by community health workers. Medical, sociodemographic and epidemiological risk factor data were collected. Young infants aged 0-59 days with signs of possible serious bacterial infection (pSBI) and age-matched controls provided blood and respiratory specimens that were analysed by blood culture and real-time PCR. These tests were used to build a Bayesian partial latent class model (PLCM) capable of attributing the probable cause of each infant's infection in the ANISA study. The collected risk factors from all mother-child pairs were classified and analysed against the PLCM using bivariate and stepwise logistic multivariable regression modelling to determine risk factors of probable bacterial infection. RESULTS: Among 63 114 infants born, 14 655 were assessed and 6022 had signs of pSBI; of these, 81% (4859) provided blood samples for culture, 71% (4216) provided blood samples for quantitative PCR (qPCR) and 86% (5209) provided respiratory qPCR samples. Risk factors associated with bacterial-attributed infections included: low (relative risk (RR) 1.73, 95% credible interval (CrI) 1.42 to 2.11) and very low birth weight (RR 5.77, 95% CrI 3.73 to 8.94), male sex (RR 1.27, 95% CrI 1.07 to 1.52), breathing problems at birth (RR 2.50, 95% CrI 1.96 to 3.18), premature rupture of membranes (PROMs) (RR 1.27, 95% CrI 1.03 to 1.58) and being in the lowest three socioeconomic status quintiles (first RR 1.52, 95% CrI 1.07 to 2.16; second RR 1.41, 95% CrI 1.00 to 1.97; third RR 1.42, 95% CrI 1.01 to 1.99). CONCLUSION: Distinct risk factors: birth weight, male sex, breathing problems at birth and PROM were significantly associated with the development of bacterial sepsis across South Asian community settings, supporting refined clinical discernment and targeted use of antimicrobials.


Subject(s)
Bacterial Infections , Community-Acquired Infections , Infant , Infant, Newborn , Pregnancy , Female , Humans , Male , Longitudinal Studies , Bayes Theorem , Community-Acquired Infections/complications , Community-Acquired Infections/epidemiology , Risk Factors , Cohort Studies , Case-Control Studies , India/epidemiology
7.
JAMA Netw Open ; 5(9): e2233273, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36156146

ABSTRACT

Importance: Pregnant people are at high risk for severe COVID-19 but were excluded from mRNA vaccine trials; data on COVID-19 vaccine effectiveness (VE) are needed. Objective: To evaluate the estimated effectiveness of mRNA vaccination against medically attended COVID-19 among pregnant people during Delta and Omicron predominance. Design, Setting, and Participants: This test-negative, case-control study was conducted from June 2021 to June 2022 in a network of 306 hospitals and 164 emergency department and urgent care (ED/UC) facilities across 10 US states, including 4517 ED/UC encounters and 975 hospitalizations among pregnant people with COVID-19-like illness (CLI) who underwent SARS-CoV-2 molecular testing. Exposures: Two doses (14-149 and ≥150 days prior) and 3 doses (7-119 and ≥120 days prior) of COVID-19 mRNA vaccine (≥1 dose received during pregnancy) vs unvaccinated. Main Outcomes and Measures: Estimated VE against laboratory-confirmed COVID-19-associated ED/UC encounter or hospitalization, based on the adjusted odds ratio (aOR) for prior vaccination; VE was calculated as (1 - aOR) × 100%. Results: Among 4517 eligible CLI-associated ED/UC encounters and 975 hospitalizations, 885 (19.6%) and 334 (34.3%) were SARS-CoV-2 positive, respectively; the median (IQR) patient age was 28 (24-32) years and 31 (26-35) years, 537 (12.0%) and 118 (12.0%) were non-Hispanic Black and 1189 (26.0%) and 240 (25.0%) were Hispanic. During Delta predominance, the estimated VE against COVID-19-associated ED/UC encounters was 84% (95% CI, 69% to 92%) for 2 doses within 14 to 149 days, 75% (95% CI, 5% to 93%) for 2 doses 150 or more days prior, and 81% (95% CI, 30% to 95%) for 3 doses 7 to 119 days prior; estimated VE against COVID-19-associated hospitalization was 99% (95% CI, 96% to 100%), 96% (95% CI, 86% to 99%), and 97% (95% CI, 79% to 100%), respectively. During Omicron predominance, for ED/UC encounters, the estimated VE of 2 doses within 14 to 149 days, 2 doses 150 or more days, 3 doses within 7 to 119 days, and 3 doses 120 or more days prior was 3% (95% CI, -49% to 37%), 42% (95% CI, -16% to 72%), 79% (95% CI, 59% to 89%), and -124% (95% CI, -414% to 2%), respectively; for hospitalization, estimated VE was 86% (95% CI, 41% to 97%), 64% (95% CI, -102% to 93%), 86% (95% CI, 28% to 97%), and -53% (95% CI, -1254% to 83%), respectively. Conclusions and Relevance: In this study, maternal mRNA COVID-19 vaccination, including booster dose, was associated with protection against medically attended COVID-19. VE estimates were higher against COVID-19-associated hospitalization than ED/UC visits and lower against the Omicron variant than the Delta variant. Protection waned over time, particularly during Omicron predominance.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Pregnancy Complications, Infectious , Adult , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Case-Control Studies , Female , Humans , Influenza, Human/prevention & control , Pregnancy , Pregnancy Complications, Infectious/epidemiology , Pregnancy Complications, Infectious/prevention & control , RNA, Messenger, Stored , SARS-CoV-2/genetics , United States/epidemiology , Vaccines, Synthetic , mRNA Vaccines
8.
Lancet Glob Health ; 10(9): e1289-e1297, 2022 09.
Article in English | MEDLINE | ID: mdl-35961352

ABSTRACT

BACKGROUND: Globally, neonatal mortality accounts for almost half of all deaths in children younger than 5 years. Aetiological agents of neonatal infection are difficult to identify because the clinical signs are non-specific. Using data from the Aetiology of Neonatal Infections in south Asia (ANISA) cohort, we aimed to describe the spectrum of infectious aetiologies of acute neonatal illness categorised post-hoc using the 2015 WHO case definitions of critical illness, clinical severe infection, and fast breathing only. METHODS: Eligible infants were aged 0-59 days with possible serious bacterial infection and healthy infants enrolled in the ANISA study in Bangladesh, India, and Pakistan. We applied a partial latent class Bayesian model to estimate the prevalence of 27 pathogens detectable on PCR, pathogens detected by blood culture only, and illness not attributed to any infectious aetiology. Infants with at least one clinical specimen available were included in the analysis. We assessed the prevalence of these aetiologies according to WHO's case definitions of critically ill, clinical severe infection, and infants with late onset, isolated fast breathing. For the clinical severe definition, we compared the prevalence of signs by bacterial versus viral aetiology. FINDINGS: There were 934 infants (992 episodes) in the critically ill category, 3769 (4000 episodes) in the clinical severe infection category, and 738 (771 episodes) in the late-onset isolated fast breathing category. We estimated the proportion of illness attributable to bacterial infection was 32·7% in infants in the critically ill group, 15·6% in the clinical severe infection group, and 8·8% among infants with late-onset isolated fast breathing group. An infectious aetiology was not identified in 58-82% of infants in these categories. Among 4000 episodes of clinical severe infection, those with bacterial versus viral attribution had higher proportions of hypothermia, movement only when stimulated, convulsions, and poor feeding. INTERPRETATION: Our modelled results generally support the revised WHO case definitions, although a revision of the most severe case definition could be considered. Clinical criteria do not clearly differentiate between young infants with and without infectious aetiologies. Our results highlight the need for improved point-of-care diagnostics, and further study into neonatal deaths and episodes with no identified aetiology, to ensure antibiotic stewardship and targeted interventions. FUNDING: The Bill and Melinda Gates Foundation.


Subject(s)
Bacterial Infections , Communicable Diseases , Bacterial Infections/etiology , Bayes Theorem , Child , Communicable Diseases/complications , Critical Illness , Humans , India/epidemiology , Infant , Infant, Newborn , World Health Organization
9.
Vaccine ; 40(32): 4283-4291, 2022 07 30.
Article in English | MEDLINE | ID: mdl-35779963

ABSTRACT

Worldwide, childhood mortality has declined significantly, with improvements in hygiene and vaccinations against common childhood illnesses, yet newborn mortality remains high. Group B Streptococcus (GBS) disease significantly contributes to newborn mortality and is the leading cause of meningitis in infants. Many years of research have demonstrated the potential for maternal vaccination against GBS to confer protection to the infant, and at least three vaccine candidates are currently undergoing clinical trials. Given the relatively low disease incidence, any clinical vaccine efficacy study would need to include at least 40,000 to 60,000 participants. Therefore, a path to vaccine licensure based on a correlate of protection (CoP) would be the preferred route, with post-approval effectiveness studies demonstrating vaccine impact on reduction of disease burden likely to be required as part of conditional marketing approval. This workshop, hosted by the Bill & Melinda Gates Foundation on 10 and 11 February 2021, discussed considerations and potential statistical methodologies for establishing a CoP for GBS disease. Consensus was reached that an antibody marker with global threshold predictive of a high level of vaccine protection would be most beneficial for licensure assessments. IgG binding antibody in cord blood would likely serve as the CoP, with additional studies needed to confirm a high correlation with functional antibody and to demonstrate comparable kinetics of natural versus vaccine-induced antibody. Common analyses of ongoing seroepidemiological studies include estimation of absolute and relative disease risk as a function of infant antibody concentration, with adjustment for confounders of the impact of antibody concentration on infant GBS disease including gestational age and maternal age. Estimation of an antibody concentration threshold indicative of high protection should build in margin for uncertainties from sources including unmeasured confounders, imperfect causal mediation, and variability in point and confidence interval estimates across regions and/or serotypes.


Subject(s)
Streptococcal Infections , Child , Fetal Blood , Humans , Immunoglobulin G , Infant , Infant, Newborn , Serogroup , Streptococcal Infections/prevention & control , Streptococcus agalactiae , Vaccination
10.
Clin Infect Dis ; 75(Suppl 2): S155-S158, 2022 10 03.
Article in English | MEDLINE | ID: mdl-35758873

ABSTRACT

In April 2021, we assessed mRNA vaccine effectiveness (VE) in the context of a COVID-19 outbreak in a skilled nursing facility. Among 28 cases, genomic sequencing was performed on 4 specimens on 4 different patients, and all were classified by sequence analysis as the Beta (B.1.351) variant. Adjusted VE among residents was 65% (95% confidence interval: 25-84%). These findings underscore the importance of vaccination for prevention of COVID-19 in skilled nursing facilities.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Disease Outbreaks/prevention & control , Humans , RNA, Messenger , SARS-CoV-2/genetics , Vaccines, Synthetic , Virginia , mRNA Vaccines
12.
JAMA ; 327(22): 2210-2219, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35560036

ABSTRACT

Importance: Efficacy of 2 doses of the BNT162b2 COVID-19 vaccine (Pfizer-BioNTech) against COVID-19 was high in pediatric trials conducted before the SARS-CoV-2 Omicron variant emerged. Among adults, estimated vaccine effectiveness (VE) of 2 BNT162b2 doses against symptomatic Omicron infection was reduced compared with prior variants, waned rapidly, and increased with a booster. Objective: To evaluate the association of symptomatic infection with prior vaccination with BNT162b2 to estimate VE among children and adolescents during Omicron variant predominance. Design, Setting, and Participants: A test-negative, case-control analysis was conducted using data from 6897 pharmacy-based, drive-through SARS-CoV-2 testing sites across the US from a single pharmacy chain in the Increasing Community Access to Testing platform. This analysis included 74 208 tests from children 5 to 11 years of age and 47 744 tests from adolescents 12 to 15 years of age with COVID-19-like illness who underwent SARS-CoV-2 nucleic acid amplification testing from December 26, 2021, to February 21, 2022. Exposures: Two BNT162b2 doses 2 weeks or more before SARS-CoV-2 testing vs no vaccination for children; 2 or 3 doses 2 weeks or more before testing vs no vaccination for adolescents (who are recommended to receive a booster dose). Main Outcomes and Measures: Symptomatic infection. The adjusted odds ratio (OR) for the association of prior vaccination and symptomatic SARS-CoV-2 infection was used to estimate VE: VE = (1 - OR) × 100%. Results: A total of 30 999 test-positive cases and 43 209 test-negative controls were included from children 5 to 11 years of age, as well as 22 273 test-positive cases and 25 471 test-negative controls from adolescents 12 to 15 years of age. The median age among those with included tests was 10 years (IQR, 7-13); 61 189 (50.2%) were female, 75 758 (70.1%) were White, and 29 034 (25.7%) were Hispanic/Latino. At 2 to 4 weeks after dose 2, among children, the adjusted OR was 0.40 (95% CI, 0.35-0.45; estimated VE, 60.1% [95% CI, 54.7%-64.8%]) and among adolescents, the OR was 0.40 (95% CI, 0.29-0.56; estimated VE, 59.5% [95% CI, 44.3%-70.6%]). During month 2 after dose 2, among children, the OR was 0.71 (95% CI, 0.67-0.76; estimated VE, 28.9% [95% CI, 24.5%-33.1%]) and among adolescents, the OR was 0.83 (95% CI, 0.76-0.92; estimated VE, 16.6% [95% CI, 8.1%-24.3%]). Among adolescents, the booster dose OR 2 to 6.5 weeks after the dose was 0.29 (95% CI, 0.24-0.35; estimated VE, 71.1% [95% CI, 65.5%-75.7%]). Conclusions and Relevance: Among children and adolescents, estimated VE for 2 doses of BNT162b2 against symptomatic infection was modest and decreased rapidly. Among adolescents, the estimated effectiveness increased after a booster dose.


Subject(s)
BNT162 Vaccine , COVID-19 , SARS-CoV-2 , Vaccine Efficacy , Adolescent , BNT162 Vaccine/therapeutic use , COVID-19/prevention & control , COVID-19/virology , COVID-19 Testing , COVID-19 Vaccines/therapeutic use , Child , Child, Preschool , Female , Humans , Immunization, Secondary , Male , Vaccination
13.
MMWR Morb Mortal Wkly Rep ; 71(9): 352-358, 2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35239634

ABSTRACT

The efficacy of the BNT162b2 (Pfizer-BioNTech) vaccine against laboratory-confirmed COVID-19 exceeded 90% in clinical trials that included children and adolescents aged 5-11, 12-15, and 16-17 years (1-3). Limited real-world data on 2-dose mRNA vaccine effectiveness (VE) in persons aged 12-17 years (referred to as adolescents in this report) have also indicated high levels of protection against SARS-CoV-2 (the virus that causes COVID-19) infection and COVID-19-associated hospitalization (4-6); however, data on VE against the SARS-CoV-2 B.1.1.529 (Omicron) variant and duration of protection are limited. Pfizer-BioNTech VE data are not available for children aged 5-11 years. In partnership with CDC, the VISION Network* examined 39,217 emergency department (ED) and urgent care (UC) encounters and 1,699 hospitalizations† among persons aged 5-17 years with COVID-19-like illness across 10 states during April 9, 2021-January 29, 2022,§ to estimate VE using a case-control test-negative design. Among children aged 5-11 years, VE against laboratory-confirmed COVID-19-associated ED and UC encounters 14-67 days after dose 2 (the longest interval after dose 2 in this age group) was 46%. Among adolescents aged 12-15 and 16-17 years, VE 14-149 days after dose 2 was 83% and 76%, respectively; VE ≥150 days after dose 2 was 38% and 46%, respectively. Among adolescents aged 16-17 years, VE increased to 86% ≥7 days after dose 3 (booster dose). VE against COVID-19-associated ED and UC encounters was substantially lower during the Omicron predominant period than the B.1.617.2 (Delta) predominant period among adolescents aged 12-17 years, with no significant protection ≥150 days after dose 2 during Omicron predominance. However, in adolescents aged 16-17 years, VE during the Omicron predominant period increased to 81% ≥7 days after a third booster dose. During the full study period, including pre-Delta, Delta, and Omicron predominant periods, VE against laboratory-confirmed COVID-19-associated hospitalization among children aged 5-11 years was 74% 14-67 days after dose 2, with wide CIs that included zero. Among adolescents aged 12-15 and 16-17 years, VE 14-149 days after dose 2 was 92% and 94%, respectively; VE ≥150 days after dose 2 was 73% and 88%, respectively. All eligible children and adolescents should remain up to date with recommended COVID-19 vaccinations, including a booster dose for those aged 12-17 years.


Subject(s)
BNT162 Vaccine/administration & dosage , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , SARS-CoV-2/immunology , Vaccine Efficacy/statistics & numerical data , Adolescent , Ambulatory Care/statistics & numerical data , Child , Child, Preschool , Emergency Service, Hospital/statistics & numerical data , Female , Hospitalization/statistics & numerical data , Humans , Immunization, Secondary , Male , United States
14.
MMWR Morb Mortal Wkly Rep ; 71(13): 495-502, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35358170

ABSTRACT

CDC recommends that all persons aged ≥18 years receive a single COVID-19 vaccine booster dose ≥2 months after receipt of an Ad.26.COV2.S (Janssen [Johnson & Johnson]) adenovirus vector-based primary series vaccine; a heterologous COVID-19 mRNA vaccine is preferred over a homologous (matching) Janssen vaccine for booster vaccination. This recommendation was made in light of the risks for rare but serious adverse events following receipt of a Janssen vaccine, including thrombosis with thrombocytopenia syndrome and Guillain-Barré syndrome† (1), and clinical trial data indicating similar or higher neutralizing antibody response following heterologous boosting compared with homologous boosting (2). Data on real-world vaccine effectiveness (VE) of different booster strategies following a primary Janssen vaccine dose are limited, particularly during the period of Omicron variant predominance. The VISION Network§ determined real-world VE of 1 Janssen vaccine dose and 2 alternative booster dose strategies: 1) a homologous booster (i.e., 2 Janssen doses) and 2) a heterologous mRNA booster (i.e., 1 Janssen dose/1 mRNA dose). In addition, VE of these booster strategies was compared with VE of a homologous booster following mRNA primary series vaccination (i.e., 3 mRNA doses). The study examined 80,287 emergency department/urgent care (ED/UC) visits¶ and 25,244 hospitalizations across 10 states during December 16, 2021-March 7, 2022, when Omicron was the predominant circulating variant.** VE against laboratory-confirmed COVID-19-associated ED/UC encounters was 24% after 1 Janssen dose, 54% after 2 Janssen doses, 79% after 1 Janssen/1 mRNA dose, and 83% after 3 mRNA doses. VE for the same vaccination strategies against laboratory-confirmed COVID-19-associated hospitalizations were 31%, 67%, 78%, and 90%, respectively. All booster strategies provided higher protection than a single Janssen dose against ED/UC visits and hospitalizations during Omicron variant predominance. Vaccination with 1 Janssen/1 mRNA dose provided higher protection than did 2 Janssen doses against COVID-19-associated ED/UC visits and was comparable to protection provided by 3 mRNA doses during the first 120 days after a booster dose. However, 3 mRNA doses provided higher protection against COVID-19-associated hospitalizations than did other booster strategies during the same time interval since booster dose. All adults who have received mRNA vaccines for their COVID-19 primary series vaccination should receive an mRNA booster dose when eligible. Adults who received a primary Janssen vaccine dose should preferentially receive a heterologous mRNA vaccine booster dose ≥2 months later, or a homologous Janssen vaccine booster dose if mRNA vaccine is contraindicated or unavailable. Further investigation of the durability of protection afforded by different booster strategies is warranted.


Subject(s)
COVID-19 , Influenza Vaccines , Adolescent , Adult , Ambulatory Care , COVID-19/prevention & control , COVID-19 Vaccines , Emergency Service, Hospital , Hospitalization , Humans , Immunization, Secondary , SARS-CoV-2 , Vaccines, Synthetic , mRNA Vaccines
15.
JAMA ; 327(11): 1032-1041, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35157002

ABSTRACT

IMPORTANCE: Monitoring COVID-19 vaccine performance over time since vaccination and against emerging variants informs control measures and vaccine policies. OBJECTIVE: To estimate the associations between symptomatic SARS-CoV-2 infection and receipt of BNT162b2, mRNA-1273, and Ad26.COV2.S by day since vaccination before and during Delta variant predominance (pre-Delta period: March 13-May 29, 2021; Delta period: July 18-October 17, 2021). DESIGN, SETTING, AND PARTICIPANTS: Test-negative, case-control design with data from 6884 US COVID-19 testing sites in the pharmacy-based Increasing Community Access to Testing platform. This study included 1 634 271 laboratory-based SARS-CoV-2 nucleic acid amplification tests (NAATs) from adults 20 years and older and 180 112 NAATs from adolescents 12 to 19 years old with COVID-19-like illness from March 13 to October 17, 2021. EXPOSURES: COVID-19 vaccination (1 Ad26.COV2.S dose or 2 mRNA doses) 14 or more days prior. MAIN OUTCOMES AND MEASURES: Association between symptomatic infection and prior vaccination measured using the odds ratio (OR) from spline-based multivariable logistic regression. RESULTS: The analysis included 390 762 test-positive cases (21.5%) and 1 423 621 test-negative controls (78.5%) (59.9% were 20-44 years old; 9.9% were 12-19 years old; 58.9% were female; 71.8% were White). Among adults 20 years and older, the BNT162b2 mean OR for days 14 to 60 after a second dose (initial OR) was lower during the pre-Delta period (0.10 [95% CI, 0.09-0.11]) than during the Delta period (0.16 [95% CI, 0.16-0.17]) and increased with time since vaccination (per-month change in OR, pre-Delta: 0.04 [95% CI, 0.02-0.05]; Delta: 0.03 [95% CI, 0.02-0.03]). The initial mRNA-1273 OR was 0.05 (95% CI, 0.04-0.05) during the pre-Delta period, 0.10 (95% CI, 0.10-0.11) during the Delta period, and increased with time (per-month change in OR, pre-Delta: 0.02 [95% CI, 0.005-0.03]; Delta: 0.03 [95% CI, 0.03-0.04]). The Ad26.COV2.S initial OR was 0.42 (95% CI, 0.37-0.47) during the pre-Delta period and 0.62 (95% CI, 0.58-0.65) during the Delta period and did not significantly increase with time since vaccination. Among adolescents, the BNT162b2 initial OR during the Delta period was 0.06 (95% CI, 0.05-0.06) among 12- to 15-year-olds, increasing by 0.02 (95% CI, 0.01-0.03) per month, and 0.10 (95% CI, 0.09-0.11) among 16- to 19-year-olds, increasing by 0.04 (95% CI, 0.03-0.06) per month. CONCLUSIONS AND RELEVANCE: Among adults, the OR for the association between symptomatic SARS-CoV-2 infection and COVID-19 vaccination (as an estimate of vaccine effectiveness) was higher during Delta variant predominance, suggesting lower protection. For mRNA vaccination, the steady increase in OR by month since vaccination was consistent with attenuation of estimated effectiveness over time; attenuation related to time was greater than that related to variant.


Subject(s)
COVID-19 Vaccines , COVID-19/prevention & control , COVID-19/virology , SARS-CoV-2 , Adolescent , Adult , Case-Control Studies , Child , Female , Humans , Male , Time Factors , Young Adult
16.
MMWR Morb Mortal Wkly Rep ; 71(7): 255-263, 2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35176007

ABSTRACT

CDC recommends that all persons aged ≥12 years receive a booster dose of COVID-19 mRNA vaccine ≥5 months after completion of a primary mRNA vaccination series and that immunocompromised persons receive a third primary dose.* Waning of vaccine protection after 2 doses of mRNA vaccine has been observed during the period of the SARS-CoV-2 B.1.617.2 (Delta) variant predominance† (1-5), but little is known about durability of protection after 3 doses during periods of Delta or SARS-CoV-2 B.1.1.529 (Omicron) variant predominance. A test-negative case-control study design using data from eight VISION Network sites§ examined vaccine effectiveness (VE) against COVID-19 emergency department/urgent care (ED/UC) visits and hospitalizations among U.S. adults aged ≥18 years at various time points after receipt of a second or third vaccine dose during two periods: Delta variant predominance and Omicron variant predominance (i.e., periods when each variant accounted for ≥50% of sequenced isolates).¶ Persons categorized as having received 3 doses included those who received a third dose in a primary series or a booster dose after a 2 dose primary series (including the reduced-dosage Moderna booster). The VISION Network analyzed 241,204 ED/UC encounters** and 93,408 hospitalizations across 10 states during August 26, 2021-January 22, 2022. VE after receipt of both 2 and 3 doses was lower during the Omicron-predominant than during the Delta-predominant period at all time points evaluated. During both periods, VE after receipt of a third dose was higher than that after a second dose; however, VE waned with increasing time since vaccination. During the Omicron period, VE against ED/UC visits was 87% during the first 2 months after a third dose and decreased to 66% among those vaccinated 4-5 months earlier; VE against hospitalizations was 91% during the first 2 months following a third dose and decreased to 78% ≥4 months after a third dose. For both Delta- and Omicron-predominant periods, VE was generally higher for protection against hospitalizations than against ED/UC visits. All eligible persons should remain up to date with recommended COVID-19 vaccinations to best protect against COVID-19-associated hospitalizations and ED/UC visits.


Subject(s)
Ambulatory Care/statistics & numerical data , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Hospitalization/statistics & numerical data , SARS-CoV-2/immunology , Vaccine Efficacy , mRNA Vaccines/administration & dosage , Adult , Aged , Aged, 80 and over , Case-Control Studies , Emergency Service, Hospital , Female , Humans , Male , Middle Aged , Time Factors , United States , Young Adult
17.
JAMA ; 327(7): 639-651, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35060999

ABSTRACT

Importance: Assessing COVID-19 vaccine performance against the rapidly spreading SARS-CoV-2 Omicron variant is critical to inform public health guidance. Objective: To estimate the association between receipt of 3 doses of Pfizer-BioNTech BNT162b2 or Moderna mRNA-1273 vaccine and symptomatic SARS-CoV-2 infection, stratified by variant (Omicron and Delta). Design, Setting, and Participants: A test-negative case-control analysis among adults 18 years or older with COVID-like illness tested December 10, 2021, through January 1, 2022, by a national pharmacy-based testing program (4666 COVID-19 testing sites across 49 US states). Exposures: Three doses of mRNA COVID-19 vaccine (third dose ≥14 days before test and ≥6 months after second dose) vs unvaccinated and vs 2 doses 6 months or more before test (ie, eligible for a booster dose). Main Outcomes and Measures: Association between symptomatic SARS-CoV-2 infection (stratified by Omicron or Delta variants defined using S-gene target failure) and vaccination (3 doses vs unvaccinated and 3 doses vs 2 doses). Associations were measured with multivariable multinomial regression. Among cases, a secondary outcome was median cycle threshold values (inversely proportional to the amount of target nucleic acid present) for 3 viral genes, stratified by variant and vaccination status. Results: Overall, 23 391 cases (13 098 Omicron; 10 293 Delta) and 46 764 controls were included (mean age, 40.3 [SD, 15.6] years; 42 050 [60.1%] women). Prior receipt of 3 mRNA vaccine doses was reported for 18.6% (n = 2441) of Omicron cases, 6.6% (n = 679) of Delta cases, and 39.7% (n = 18 587) of controls; prior receipt of 2 mRNA vaccine doses was reported for 55.3% (n = 7245), 44.4% (n = 4570), and 41.6% (n = 19 456), respectively; and being unvaccinated was reported for 26.0% (n = 3412), 49.0% (n = 5044), and 18.6% (n = 8721), respectively. The adjusted odds ratio for 3 doses vs unvaccinated was 0.33 (95% CI, 0.31-0.35) for Omicron and 0.065 (95% CI, 0.059-0.071) for Delta; for 3 vaccine doses vs 2 doses the adjusted odds ratio was 0.34 (95% CI, 0.32-0.36) for Omicron and 0.16 (95% CI, 0.14-0.17) for Delta. Median cycle threshold values were significantly higher in cases with 3 doses vs 2 doses for both Omicron and Delta (Omicron N gene: 19.35 vs 18.52; Omicron ORF1ab gene: 19.25 vs 18.40; Delta N gene: 19.07 vs 17.52; Delta ORF1ab gene: 18.70 vs 17.28; Delta S gene: 23.62 vs 20.24). Conclusions and Relevance: Among individuals seeking testing for COVID-like illness in the US in December 2021, receipt of 3 doses of mRNA COVID-19 vaccine (compared with unvaccinated and with receipt of 2 doses) was less likely among cases with symptomatic SARS-CoV-2 infection compared with test-negative controls. These findings suggest that receipt of 3 doses of mRNA vaccine, relative to being unvaccinated and to receipt of 2 doses, was associated with protection against both the Omicron and Delta variants, although the higher odds ratios for Omicron suggest less protection for Omicron than for Delta.


Subject(s)
2019-nCoV Vaccine mRNA-1273/administration & dosage , BNT162 Vaccine/administration & dosage , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , SARS-CoV-2 , Vaccine Efficacy , Adolescent , Adult , Aged , COVID-19/epidemiology , COVID-19/virology , Case-Control Studies , Dose-Response Relationship, Immunologic , Humans , Immunization, Secondary , Middle Aged , Odds Ratio , Regression Analysis , Retrospective Studies , Risk Factors , Young Adult
18.
Am J Epidemiol ; 191(5): 800-811, 2022 03 24.
Article in English | MEDLINE | ID: mdl-35081612

ABSTRACT

Recent studies have provided key information about SARS-CoV-2 vaccines' efficacy and effectiveness (VE). One important question that remains is whether the protection conferred by vaccines wanes over time. However, estimates over time are subject to bias from differential depletion of susceptible individuals between vaccinated and unvaccinated groups. We examined the extent to which biases occur under different scenarios and assessed whether serological testing has the potential to correct this bias. By identifying nonvaccine antibodies, these tests could identify individuals with prior infection. We found that in scenarios with high baseline VE, differential depletion of susceptible individuals created minimal bias in VE estimates, suggesting that any observed declines are likely not due to spurious waning alone. However, if baseline VE was lower, the bias for leaky vaccines (which reduce individual probability of infection given contact) was larger and should be corrected for by excluding individuals with past infection if the mechanism is known to be leaky. Conducting analyses both unadjusted and adjusted for past infection could give lower and upper bounds for the true VE. Studies of VE should therefore enroll individuals regardless of prior infection history but also collect information, ideally through serological testing, on this critical variable.


Subject(s)
COVID-19 , Vaccines , Bias , COVID-19/prevention & control , COVID-19 Vaccines , Disease Susceptibility , Humans , SARS-CoV-2
19.
MMWR Morb Mortal Wkly Rep ; 71(4): 139-145, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35085224

ABSTRACT

Estimates of COVID-19 mRNA vaccine effectiveness (VE) have declined in recent months (1,2) because of waning vaccine induced immunity over time,* possible increased immune evasion by SARS-CoV-2 variants (3), or a combination of these and other factors. CDC recommends that all persons aged ≥12 years receive a third dose (booster) of an mRNA vaccine ≥5 months after receipt of the second mRNA vaccine dose and that immunocompromised individuals receive a third primary dose.† A third dose of BNT162b2 (Pfizer-BioNTech) COVID-19 vaccine increases neutralizing antibody levels (4), and three recent studies from Israel have shown improved effectiveness of a third dose in preventing COVID-19 associated with infections with the SARS-CoV-2 B.1.617.2 (Delta) variant (5-7). Yet, data are limited on the real-world effectiveness of third doses of COVID-19 mRNA vaccine in the United States, especially since the SARS-CoV-2 B.1.1.529 (Omicron) variant became predominant in mid-December 2021. The VISION Network§ examined VE by analyzing 222,772 encounters from 383 emergency departments (EDs) and urgent care (UC) clinics and 87,904 hospitalizations from 259 hospitals among adults aged ≥18 years across 10 states from August 26, 2021¶ to January 5, 2022. Analyses were stratified by the period before and after the Omicron variant became the predominant strain (>50% of sequenced viruses) at each study site. During the period of Delta predominance across study sites in the United States (August-mid-December 2021), VE against laboratory-confirmed COVID-19-associated ED and UC encounters was 86% 14-179 days after dose 2, 76% ≥180 days after dose 2, and 94% ≥14 days after dose 3. Estimates of VE for the same intervals after vaccination during Omicron variant predominance were 52%, 38%, and 82%, respectively. During the period of Delta variant predominance, VE against laboratory-confirmed COVID-19-associated hospitalizations was 90% 14-179 days after dose 2, 81% ≥180 days after dose 2, and 94% ≥14 days after dose 3. During Omicron variant predominance, VE estimates for the same intervals after vaccination were 81%, 57%, and 90%, respectively. The highest estimates of VE against COVID-19-associated ED and UC encounters or hospitalizations during both Delta- and Omicron-predominant periods were among adults who received a third dose of mRNA vaccine. All unvaccinated persons should get vaccinated as soon as possible. All adults who have received mRNA vaccines during their primary COVID-19 vaccination series should receive a third dose when eligible, and eligible persons should stay up to date with COVID-19 vaccinations.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Immunization, Secondary , SARS-CoV-2/immunology , Vaccine Efficacy/statistics & numerical data , mRNA Vaccines/administration & dosage , Adult , Aged , Aged, 80 and over , Ambulatory Care/statistics & numerical data , Emergency Service, Hospital/statistics & numerical data , Female , Hospitalization/statistics & numerical data , Humans , Male , Middle Aged , United States/epidemiology
20.
Clin Infect Dis ; 75(1): e838-e845, 2022 08 24.
Article in English | MEDLINE | ID: mdl-35083482

ABSTRACT

BACKGROUND: Prisons and jails are high-risk settings for coronavirus disease 2019 (COVID-19). Vaccines may substantially reduce these risks, but evidence is needed on COVID-19 vaccine effectiveness for incarcerated people, who are confined in large, risky congregate settings. METHODS: We conducted a retrospective cohort study to estimate effectiveness of messenger RNA (mRNA) vaccines, BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna), against confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections among incarcerated people in California prisons from 22 December 2020 through 1 March 2021. The California Department of Corrections and Rehabilitation provided daily data for all prison residents including demographic, clinical, and carceral characteristics, as well as COVID-19 testing, vaccination, and outcomes. We estimated vaccine effectiveness using multivariable Cox models with time-varying covariates, adjusted for resident characteristics and infection rates across prisons. RESULTS: Among 60 707 cohort members, 49% received at least 1 BNT162b2 or mRNA-1273 dose during the study period. Estimated vaccine effectiveness was 74% (95% confidence interval [CI], 64%-82%) from day 14 after first dose until receipt of second dose and 97% (95% CI, 88%-99%) from day 14 after second dose. Effectiveness was similar among the subset of residents who were medically vulnerable: 74% (95% CI, 62%-82%) and 92% (95% CI, 74%-98%) from 14 days after first and second doses, respectively. CONCLUSIONS: Consistent with results from randomized trials and observational studies in other populations, mRNA vaccines were highly effective in preventing SARS-CoV-2 infections among incarcerated people. Prioritizing incarcerated people for vaccination, redoubling efforts to boost vaccination, and continuing other ongoing mitigation practices are essential in preventing COVID-19 in this disproportionately affected population.


Subject(s)
COVID-19 , Prisoners , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Testing , COVID-19 Vaccines , California/epidemiology , Humans , Prisons , Retrospective Studies , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...