Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO Mol Med ; 11(10): e10018, 2019 10.
Article in English | MEDLINE | ID: mdl-31468715

ABSTRACT

Pathological cardiac overload induces myocardial protein synthesis and hypertrophy, which predisposes to heart failure. To inhibit hypertrophy therapeutically, the identification of negative regulators of cardiomyocyte protein synthesis is needed. Here, we identified the tumor suppressor protein TIP30 as novel inhibitor of cardiac hypertrophy and dysfunction. Reduced TIP30 levels in mice entailed exaggerated cardiac growth during experimental pressure overload, which was associated with cardiomyocyte cellular hypertrophy, increased myocardial protein synthesis, reduced capillary density, and left ventricular dysfunction. Pharmacological inhibition of protein synthesis improved these defects. Our results are relevant for human disease, since we found diminished cardiac TIP30 levels in samples from patients suffering from end-stage heart failure or hypertrophic cardiomyopathy. Importantly, therapeutic overexpression of TIP30 in mouse hearts inhibited cardiac hypertrophy and improved left ventricular function during pressure overload and in cardiomyopathic mdx mice. Mechanistically, we identified a previously unknown anti-hypertrophic mechanism, whereby TIP30 binds the eukaryotic elongation factor 1A (eEF1A) to prevent the interaction with its essential co-factor eEF1B2 and translational elongation. Therefore, TIP30 could be a therapeutic target to counteract cardiac hypertrophy.


Subject(s)
Acetyltransferases/metabolism , Cardiomegaly/physiopathology , Peptide Chain Elongation, Translational , Transcription Factors/metabolism , Animals , Disease Models, Animal , Guanine Nucleotide Exchange Factors/metabolism , Humans , Mice , Mice, Inbred mdx , Myocytes, Cardiac/metabolism , Peptide Elongation Factor 1/metabolism , Protein Binding , Protein Interaction Maps , Repressor Proteins/metabolism , Tumor Suppressor Proteins/metabolism
3.
EMBO Mol Med ; 9(2): 265-279, 2017 02.
Article in English | MEDLINE | ID: mdl-28053183

ABSTRACT

Heart failure is often the consequence of insufficient cardiac regeneration. Neonatal mice retain a certain capability of myocardial regeneration until postnatal day (P)7, although the underlying transcriptional mechanisms remain largely unknown. We demonstrate here that cardiac abundance of the transcription factor GATA4 was high at P1, but became strongly reduced at P7 in parallel with loss of regenerative capacity. Reconstitution of cardiac GATA4 levels by adenoviral gene transfer markedly improved cardiac regeneration after cryoinjury at P7. In contrast, the myocardial scar was larger in cardiomyocyte-specific Gata4 knockout (CM-G4-KO) mice after cryoinjury at P0, indicative of impaired regeneration, which was accompanied by reduced cardiomyocyte proliferation and reduced myocardial angiogenesis in CM-G4-KO mice. Cardiomyocyte proliferation was also diminished in cardiac explants from CM-G4-KO mice and in isolated cardiomyocytes with reduced GATA4 expression. Mechanistically, decreased GATA4 levels caused the downregulation of several pro-regenerative genes (among them interleukin-13, Il13) in the myocardium. Interestingly, systemic administration of IL-13 rescued defective heart regeneration in CM-G4-KO mice and could be evaluated as therapeutic strategy in the future.


Subject(s)
GATA4 Transcription Factor/metabolism , Heart Injuries , Heart/physiology , Regeneration , Transcription, Genetic , Animals , Animals, Newborn , Gene Deletion , Gene Expression , Gene Expression Regulation , Mice , Mice, Knockout , Transduction, Genetic
4.
Circ Res ; 120(1): 66-77, 2017 Jan 06.
Article in English | MEDLINE | ID: mdl-27821723

ABSTRACT

RATIONALE: Myocardial endothelial cells promote cardiomyocyte hypertrophy, possibly through the release of growth factors. The identity of these factors, however, remains largely unknown, and we hypothesized here that the secreted CTRP9 (C1q-tumor necrosis factor-related protein-9) might act as endothelial-derived protein to modulate heart remodeling in response to pressure overload. OBJECTIVE: To examine the source of cardiac CTRP9 and its function during pressure overload. METHODS AND RESULTS: CTRP9 was mainly derived from myocardial capillary endothelial cells. CTRP9 mRNA expression was enhanced in hypertrophic human hearts and in mouse hearts after transverse aortic constriction (TAC). CTRP9 protein was more abundant in the serum of patients with severe aortic stenosis and in murine hearts after TAC. Interestingly, heterozygous and especially homozygous knock-out C1qtnf9 (CTRP9) gene-deleted mice were protected from the development of cardiac hypertrophy, left ventricular dilatation, and dysfunction during TAC. CTRP9 overexpression, in turn, promoted hypertrophic cardiac remodeling and dysfunction after TAC in mice and induced hypertrophy in isolated adult cardiomyocytes. Mechanistically, CTRP9 knock-out mice showed strongly reduced levels of activated prohypertrophic ERK5 (extracellular signal-regulated kinase 5) during TAC compared with wild-type mice, while CTRP9 overexpression entailed increased ERK5 activation in response to pressure overload. Inhibition of ERK5 by a dominant negative MEK5 mutant or by the ERK5/MEK5 inhibitor BIX02189 blunted CTRP9 triggered hypertrophy in isolated adult cardiomyocytes in vitro and attenuated mouse cardiomyocyte hypertrophy and cardiac dysfunction in vivo, respectively. Downstream of ERK5, we identified the prohypertrophic transcription factor GATA4, which was directly activated through ERK5-dependent phosphorylation. CONCLUSIONS: The upregulation of CTRP9 during hypertrophic heart disease facilitates maladaptive cardiac remodeling and left ventricular dysfunction and might constitute a therapeutic target in the future.


Subject(s)
Adiponectin/biosynthesis , Cardiomegaly/metabolism , Glycoproteins/biosynthesis , Heart Failure/metabolism , Animals , Cardiomegaly/pathology , Cells, Cultured , Heart Failure/pathology , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Rats , Rats, Sprague-Dawley , Tumor Necrosis Factor Receptor-Associated Peptides and Proteins , Ventricular Dysfunction, Left/metabolism , Ventricular Dysfunction, Left/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...