Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 25(12): 105625, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36479148

ABSTRACT

Breathing is dynamically modulated by metabolic needs as well as by emotional states. Even though rodents are invaluable models for investigating the neural control of respiration, current literature lacks systematic characterization of breathing dynamics across a broad spectrum of rodent behaviors. Here we uncover a wide diversity in breathing patterns across spontaneous, attractive odor-, stress-, and fear-induced behaviors in mice. Direct recordings of intranasal pressure afford more detailed respiratory information than more traditional whole-body plethysmography. K-means clustering groups 11 well-defined behavioral states into four clusters with distinct key respiratory features. Furthermore, we implement RUSBoost (random undersampling boost) classification, a supervised machine learning model, and find that breathing patterns can separate these behaviors with an accuracy of 80%. Taken together, our findings highlight the tight relationship between breathing and behavior and the potential use of breathing patterns to aid in distinguishing similar behaviors and inform about their internal states.

2.
Cell Rep ; 38(9): 110450, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35235805

ABSTRACT

Decreased responsiveness to sensory stimuli during sleep is presumably mediated via thalamic gating. Without an obligatory thalamic relay in the olfactory system, the anterior piriform cortex (APC) is suggested to be a gate in anesthetized states. However, olfactory processing in natural sleep states remains undetermined. Here, we simultaneously record local field potentials (LFPs) in hierarchical olfactory regions (olfactory bulb [OB], APC, and orbitofrontal cortex) while optogenetically activating olfactory sensory neurons, ensuring consistent peripheral inputs across states in behaving mice. Surprisingly, evoked LFPs in sleep states (both non-rapid eye movement [NREM] and rapid eye movement [REM]) are larger and contain greater gamma-band power and cross-region coherence (compared to wakefulness) throughout the olfactory pathway, suggesting the lack of a central gate. Single-unit recordings from the OB and APC reveal a higher percentage of responsive neurons during sleep with a higher incidence of suppressed firing. Additionally, nasal breathing is slower and shallower during sleep, suggesting a partial peripheral gating mechanism.


Subject(s)
Olfactory Cortex , Smell , Animals , Mice , Olfactory Bulb/physiology , Olfactory Pathways/physiology , Smell/physiology , Wakefulness/physiology
4.
Nat Neurosci ; 24(12): 1699-1710, 2021 12.
Article in English | MEDLINE | ID: mdl-34795450

ABSTRACT

The striatum comprises multiple subdivisions and neural circuits that differentially control motor output. The islands of Calleja (IC) contain clusters of densely packed granule cells situated in the ventral striatum, predominantly in the olfactory tubercle (OT). Characterized by expression of the D3 dopamine receptor, the IC are evolutionally conserved, but have undefined functions. Here, we show that optogenetic activation of OT D3 neurons robustly initiates self-grooming in mice while suppressing other ongoing behaviors. Conversely, optogenetic inhibition of these neurons halts ongoing grooming, and genetic ablation reduces spontaneous grooming. Furthermore, OT D3 neurons show increased activity before and during grooming and influence local striatal output via synaptic connections with neighboring OT neurons (primarily spiny projection neurons), whose firing rates display grooming-related modulation. Our study uncovers a new role of the ventral striatum's IC in regulating motor output and has important implications for the neural control of grooming.


Subject(s)
Islands of Calleja , Ventral Striatum , Animals , Corpus Striatum/metabolism , Grooming , Mice , Neurons/physiology , Olfactory Tubercle
5.
Curr Biol ; 31(8): R396-R398, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33905700

ABSTRACT

How the brain categorizes external stimuli in an experience-dependent, behaviorally relevant manner is a fundamental question. A new study reveals that mitral cells in the olfactory bulb of mice dynamically represent value- and category-related odor information in learned behavioral tasks.


Subject(s)
Neurosciences , Odorants , Animals , Mice
6.
Curr Biol ; 30(1): 31-41.e3, 2020 01 06.
Article in English | MEDLINE | ID: mdl-31839448

ABSTRACT

Predicting danger from previously associated sensory stimuli is essential for survival. Contributions from altered peripheral sensory inputs are implicated in this process, but the underlying mechanisms remain elusive. Here, we use the mammalian olfactory system to investigate such mechanisms. Primary olfactory sensory neurons (OSNs) project their axons directly to the olfactory bulb (OB) glomeruli, where their synaptic release is subject to local and cortical influence and neuromodulation. Pairing optogenetic activation of a single glomerulus with foot shock in mice induces freezing to light stimulation alone during fear retrieval. This is accompanied by an increase in OSN release probability and a reduction in GABAB receptor expression in the conditioned glomerulus. Furthermore, freezing time is positively correlated with the release probability of OSNs in fear-conditioned mice. These results suggest that aversive learning increases peripheral olfactory inputs at the first synapse, which may contribute to the behavioral outcome.


Subject(s)
Conditioning, Operant , Fear , Learning , Olfactory Bulb/physiology , Olfactory Nerve/physiology , Animals , Female , Male , Mice
7.
Nat Commun ; 9(1): 1528, 2018 04 18.
Article in English | MEDLINE | ID: mdl-29670106

ABSTRACT

Respiration and airflow through the nasal cavity are known to be correlated with rhythmic neural activity in the central nervous system. Here we show in rodents that during conditioned fear-induced freezing behavior, mice breathe at a steady rate (~4 Hz), which is correlated with a predominant 4-Hz oscillation in the prelimbic prefrontal cortex (plPFC), a structure critical for expression of conditioned fear behaviors. We demonstrate anatomical and functional connections between the olfactory pathway and plPFC via circuit tracing and optogenetics. Disruption of olfactory inputs significantly reduces the 4-Hz oscillation in the plPFC, but leads to prolonged freezing periods. Our results indicate that olfactory inputs can modulate rhythmic activity in plPFC and freezing behavior.


Subject(s)
Extinction, Psychological/physiology , Fear/physiology , Prefrontal Cortex/physiology , Respiration , Smell/physiology , Animals , Female , Immunohistochemistry , Limbic System/physiology , Male , Mice , Mice, Inbred C57BL , Neurons/physiology , Olfactory Pathways , Optogenetics , Periodicity
8.
J Neurosci ; 37(26): 6299-6313, 2017 06 28.
Article in English | MEDLINE | ID: mdl-28546313

ABSTRACT

In sensory hair cells of auditory and vestibular organs, the ribbon synapse is required for the precise encoding of a wide range of complex stimuli. Hair cells have a unique presynaptic structure, the synaptic ribbon, which organizes both synaptic vesicles and calcium channels at the active zone. Previous work has shown that hair-cell ribbon size is correlated with differences in postsynaptic activity. However, additional variability in postsynapse size presents a challenge to determining the specific role of ribbon size in sensory encoding. To selectively assess the impact of ribbon size on synapse function, we examined hair cells in transgenic zebrafish that have enlarged ribbons, without postsynaptic alterations. Morphologically, we found that enlarged ribbons had more associated vesicles and reduced presynaptic calcium-channel clustering. Functionally, hair cells with enlarged ribbons had larger global and ribbon-localized calcium currents. Afferent neuron recordings revealed that hair cells with enlarged ribbons resulted in reduced spontaneous spike rates. Additionally, despite larger presynaptic calcium signals, we observed fewer evoked spikes with longer latencies from stimulus onset. Together, our work indicates that hair-cell ribbon size influences the spontaneous spiking and the precise encoding of stimulus onset in afferent neurons.SIGNIFICANCE STATEMENT Numerous studies support that hair-cell ribbon size corresponds with functional sensitivity differences in afferent neurons and, in the case of inner hair cells of the cochlea, vulnerability to damage from noise trauma. Yet it is unclear whether ribbon size directly influences sensory encoding. Our study reveals that ribbon enlargement results in increased ribbon-localized calcium signals, yet reduces afferent spontaneous activity and disrupts the timing of stimulus onset, a distinct aspect of auditory and vestibular encoding. These observations suggest that varying ribbon size alone can influence sensory encoding, and give further insight into how hair cells transduce signals that cover a wide dynamic range of stimuli.


Subject(s)
Action Potentials/physiology , Calcium Signaling/physiology , Mechanoreceptors/cytology , Mechanoreceptors/physiology , Reaction Time/physiology , Zebrafish/physiology , Animals , Animals, Genetically Modified , Cell Size , Lateral Line System/cytology , Lateral Line System/physiology , Neural Inhibition/physiology , Zebrafish/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL
...