Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 153
Filter
Add more filters










Publication year range
1.
Nat Genet ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778242

ABSTRACT

The maize root system has been reshaped by indirect selection during global adaptation to new agricultural environments. In this study, we characterized the root systems of more than 9,000 global maize accessions and its wild relatives, defining the geographical signature and genomic basis of variation in seminal root number. We demonstrate that seminal root number has increased during maize domestication followed by a decrease in response to limited water availability in locally adapted varieties. By combining environmental and phenotypic association analyses with linkage mapping, we identified genes linking environmental variation and seminal root number. Functional characterization of the transcription factor ZmHb77 and in silico root modeling provides evidence that reshaping root system architecture by reducing the number of seminal roots and promoting lateral root density is beneficial for the resilience of maize seedlings to drought.

2.
Microb Ecol ; 87(1): 62, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38683223

ABSTRACT

Here, we demonstrate the beneficial effect of surfactant-producing pseudomonads on Pantoea eucalypti 299R. We conducted a series of experiments in environments of increasing complexity. P. eucalypti 299R (Pe299R), and Pseudomonas sp. FF1 (Pff1) or Pe299R and surfactant-production deficient Pseudomonas sp. FF1::ΔviscB (Pff1ΔviscB) were co-inoculated in broth, on swarming agar plates, and on plants. In broth, there were no differences in the growth dynamics of Pe299R when growing in the presence of Pff1 or Pff1ΔviscB. By contrast, on swarming agar plates, Pe299R was able to co-swarm with Pff1 which led to a significant increase in Pe299R biomass compared to Pe299R growing with Pff1ΔviscB or in monoculture. Finally in planta, and using the single-cell bioreporter for reproductive success (CUSPER), we found a temporally distinct beneficial effect of Pff1 on co-inoculated Pe299R subpopulations that did not occur in the presence of Pff1ΔviscB. We tested three additional surfactant-producing pseudomonads and their respective surfactant knockout mutants on PE299R on swarming agar showing similar results. This led us to propose a model for the positive effect of surfactant production during leaf colonization. Our results indicate that co-motility might be common during leaf colonization and adds yet another facet to the already manyfold roles of surfactants.


Subject(s)
Pantoea , Pseudomonas , Surface-Active Agents , Pantoea/genetics , Pantoea/metabolism , Pantoea/physiology , Pantoea/growth & development , Pseudomonas/metabolism , Pseudomonas/genetics , Pseudomonas/growth & development , Pseudomonas/physiology , Surface-Active Agents/metabolism
3.
New Phytol ; 242(1): 137-153, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38366280

ABSTRACT

The precise functions of suberized apoplastic barriers in root water and nutrient transport physiology have not fully been elucidated. While lots of research has been performed with mutants of Arabidopsis, little to no data are available for mutants of agricultural crop or tree species. By employing a combined set of physiological, histochemical, analytical, and transport physiological methods as well as RNA-sequencing, this study investigated the implications of remarkable CRISPR/Cas9-induced suberization defects in young roots of the economically important gray poplar. While barely affecting overall plant development, contrary to literature-based expectations significant root suberin reductions of up to 80-95% in four independent mutants were shown to not evidently affect the root hydraulic conductivity during non-stress conditions. In addition, subliminal iron deficiency symptoms and increased translocation of a photosynthesis inhibitor as well as NaCl highlight the involvement of suberin in nutrient transport physiology. The multifaceted nature of the root hydraulic conductivity does not allow drawing simplified conclusions such as that the suberin amount must always be correlated with the water transport properties of roots. However, the decreased masking of plasma membrane surface area could facilitate the uptake but also leakage of beneficial and harmful solutes.


Subject(s)
Arabidopsis , Plant Roots , Plant Roots/metabolism , Lipids/chemistry , Biological Transport , Arabidopsis/metabolism , Water/metabolism , Crops, Agricultural/metabolism
4.
Sci Rep ; 14(1): 4535, 2024 02 24.
Article in English | MEDLINE | ID: mdl-38402319

ABSTRACT

Hardly anything is known regarding the detoxification of surfactants in crop plants, although they are frequently treated with agrochemical formulations. Therefore, we studied transcriptomic changes in barley leaves induced in response to spraying leaf surfaces with two alcohol ethoxylates (AEs). As model surfactants, we selected the monodisperse tetraethylene glycol monododecyl (C12E4) ether and the polydisperse BrijL4. Barley plants were harvested 8 h after spraying with a 0.1% surfactant solution and changes in gene expression were analysed by RNA-sequencing (RNA-Seq). Gene expression was significantly altered in response to both surfactants. With BrijL4 more genes (9724) were differentially expressed compared to C12E4 (6197). Gene families showing pronounced up-regulation were cytochrome P450 enzymes, monooxygenases, ABC-transporters, acetyl- and methyl- transferases, glutathione-S-transferases and glycosyltransferases. These specific changes in gene expression and the postulated function of the corresponding enzymes allowed hypothesizing three potential metabolic pathways of AE detoxification in barley leaves. (i) Up-regulation of P450 cytochrome oxidoreductases suggested a degradation of the lipophilic alkyl residue (dodecyl chain) of the AEs by ω- and ß- oxidation. (ii) Alternatively, the polar PEG-chain of AEs could be degraded. (iii) Instead of surfactant degradation, a further pathway of detoxification could be the sequestration of AEs into the vacuole or the apoplast (cell wall). Thus, our results show that AEs lead to pronounced changes in the expression of genes coding for proteins potentially being involved in the detoxification of surfactants.


Subject(s)
Hordeum , Hordeum/genetics , Surface-Active Agents/pharmacology , Gene Expression Profiling , Ethanol , Plant Leaves/genetics
5.
Stress Biol ; 3(1): 24, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37676401

ABSTRACT

Populus is an important tree genus frequently cultivated for economical purposes. However, the high sensitivity of poplars towards water deficit, drought, and salt accumulation significantly affects plant productivity and limits biomass yield. Various cultivation and abiotic stress conditions have been described to significantly induce the formation of apoplastic barriers (Casparian bands and suberin lamellae) in roots of different monocotyledonous crop species. Thus, this study aimed to investigate to which degree the roots of the dicotyledonous gray poplar (Populus × canescens) react to a set of selected cultivation conditions (hydroponics, aeroponics, or soil) and abiotic stress treatments (abscisic acid, oxygen deficiency) because a differing stress response could potentially help in explaining the observed higher stress susceptibility. The apoplastic barriers of poplar roots cultivated in different environments were analyzed by means of histochemistry and gas chromatography and compared to the available literature on monocotyledonous crop species. Overall, dicotyledonous poplar roots showed only a remarkably low induction or enhancement of apoplastic barriers in response to the different cultivation conditions and abiotic stress treatments. The genetic optimization (e.g., overexpression of biosynthesis key genes) of the apoplastic barrier development in poplar roots might result in more stress-tolerant cultivars in the future.

6.
Nat Commun ; 14(1): 4285, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37463897

ABSTRACT

The conversion of lignocellulosic feedstocks to fermentable sugar for biofuel production is inefficient, and most strategies to enhance efficiency directly target lignin biosynthesis, with associated negative growth impacts. Here we demonstrate, for both laboratory- and field-grown plants, that expression of Pag-miR408 in poplar (Populus alba × P. glandulosa) significantly enhances saccharification, with no requirement for acid-pretreatment, while promoting plant growth. The overexpression plants show increased accessibility of cell walls to cellulase and scaffoldin cellulose-binding modules. Conversely, Pag-miR408 loss-of-function poplar shows decreased cell wall accessibility. Overexpression of Pag-miR408 targets three Pag-LACCASES, delays lignification, and modestly reduces lignin content, S/G ratio and degree of lignin polymerization. Meanwhile, the LACCASE loss of function mutants exhibit significantly increased growth and cell wall accessibility in xylem. Our study shows how Pag-miR408 regulates lignification and secondary growth, and suggest an effective approach towards enhancing biomass yield and saccharification efficiency in a major bioenergy crop.


Subject(s)
MicroRNAs , Populus , Lignin/metabolism , Plants, Genetically Modified/genetics , MicroRNAs/genetics , Biomass , Populus/metabolism
7.
New Phytol ; 239(5): 1903-1918, 2023 09.
Article in English | MEDLINE | ID: mdl-37349864

ABSTRACT

The cuticle is a protective layer covering aerial plant organs. We studied the function of waxes for the establishment of the cuticular barrier in barley (Hordeum vulgare). The barley eceriferum mutants cer-za.227 and cer-ye.267 display reduced wax loads, but the genes affected, and the consequences of the wax changes for the barrier function remained unknown. Cuticular waxes and permeabilities were measured in cer-za.227 and cer-ye.267. The mutant loci were isolated by bulked segregant RNA sequencing. New cer-za alleles were generated by genome editing. The CER-ZA protein was characterized after expression in yeast and Arabidopsis cer4-3. Cer-za.227 carries a mutation in HORVU5Hr1G089230 encoding acyl-CoA reductase (FAR1). The cer-ye.267 mutation is located to HORVU4Hr1G063420 encoding ß-ketoacyl-CoA synthase (KAS1) and is allelic to cer-zh.54. The amounts of intracuticular waxes were strongly decreased in cer-ye.267. The cuticular water loss and permeability of cer-za.227 were similar to wild-type (WT), but were increased in cer-ye.267. Removal of epicuticular waxes revealed that intracuticular, but not epicuticular waxes are required to regulate cuticular transpiration. The differential decrease in intracuticular waxes between cer-za.227 and cer-ye.267, and the removal of epicuticular waxes indicate that the cuticular barrier function mostly depends on the presence of intracuticular waxes.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Hordeum , Saccharomyces cerevisiae Proteins , Hordeum/genetics , Hordeum/metabolism , Plant Leaves/metabolism , Water/metabolism , Saccharomyces cerevisiae/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Waxes/metabolism , Mutation/genetics , Plant Epidermis/metabolism , Nuclear Proteins/metabolism , Arabidopsis Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Cyclin-Dependent Kinase Inhibitor Proteins/genetics , Cyclin-Dependent Kinase Inhibitor Proteins/metabolism
8.
Plant Physiol ; 192(4): 2902-2922, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37226859

ABSTRACT

Amur honeysuckle (Lonicera maackii) is a widely used medicinal plant of the Caprifoliaceae family that produces chlorogenic acid. Research on this plant mainly focuses on its ornamental value and medicinal compounds, but a reference genome sequence and molecular resources for accelerated breeding are currently lacking. Herein, nanopore sequencing and high-throughput chromosome conformation capture (Hi-C) allowed a chromosome-level genome assembly of L. maackii (2n = 18). A global view of the gene regulatory network involved in the biosynthesis of chlorogenic acid and the dynamics of fruit coloration in L. maackii was established through metabolite profiling and transcriptome analyses. Moreover, we identified the genes encoding hydroxycinnamoyl-CoA quinate transferase (LmHQT) and hydroxycinnamoyl-CoA shikimic/quinate transferase (LmHCT), which localized to the cytosol and nucleus. Heterologous overexpression of these genes in Nicotiana benthamiana leaves resulted in elevated chlorogenic acid contents. Importantly, HPLC analyses revealed that LmHCT and LmHQTs recombinant proteins modulate the accumulation of chlorogenic acid (CGA) using quinic acid and caffeoyl CoA as substrates, highlighting the importance of LmHQT and LmHCT in CGA biosynthesis. These results confirmed that LmHQTs and LmHCT catalyze the biosynthesis of CGA in vitro. The genomic data presented in this study will offer a valuable resource for the elucidation of CGA biosynthesis and facilitating selective molecular breeding.


Subject(s)
Chlorogenic Acid , Lonicera , Chlorogenic Acid/metabolism , Lonicera/genetics , Lonicera/metabolism , Quinic Acid/metabolism , Plant Breeding , Chromosome Mapping
9.
J Plant Physiol ; 282: 153921, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36780757

ABSTRACT

Anatomical, histochemical, chemical, and biosynthetic similarities and differences of cutinized and suberized plant cell walls are presented and reviewed in brief. Based on this, the functional properties of cutinized and suberized plant cell walls acting as transport barriers are compared and discussed in more detail. This is of general importance because fundamental misconceptions about relationships in plant-environment water relations are commonly encountered in the scientific literature. It will be shown here, that cuticles represent highly efficient apoplastic transport barriers significantly reducing the diffusion of water and dissolved compounds. The transport barrier of cuticles is mainly established by the deposition of cuticular waxes. Upon wax extraction, with the cutin polymer remaining, cuticular permeability for water and dissolved non-ionized and lipophilic solutes are increasing by 2-3 orders of magnitude, whereas polar and charged substances (e.g., nutrient ions) are only weakly affected (2- to 3-fold increases in permeability). Suberized apoplastic barriers without the deposition of wax are at least as permeable as the cutin polymer matrix without waxes and hardly offer any resistance to the free movement of water. Only upon the deposition of significant amounts of wax, as it is the case with suberized periderms exposed to the atmosphere, an efficient transport barrier for water can be established by suberized cell walls. Comparing the driving forces (gradients between water potentials inside leaves and roots and the surrounding environment) for water loss acting on leaves and roots, it is shown that leaves must have a genetically pre-defined highly efficient transpiration barrier fairly independent from rapidly changing environmental influences. Roots, in most conditions facing a soil environment with relative humidities very close to 100%, are orders of magnitude more permeable to water than leaf cuticles. Upon desiccation, the permanent wilting point of plants is defined as -1.5 MPa, which still corresponds to nearly 99% relative humidity in soil. Thus, the main reason for plant water stress leading to dehydration is the inability of root tissues to decrease their internal water potential to values more negative than -1.5 MPa and not the lack of a transport barrier for water in roots and leaves. Taken together, the commonly mentioned concepts that a drought-induced increase of cuticular wax or root suberin considerably strengthens the apoplastic leaf or root transport barriers and thus aids in water conservation appears highly questionable.


Subject(s)
Plants , Waxes , Biological Transport , Diffusion , Plant Leaves/chemistry , Polymers
10.
Physiol Plant ; 174(5): e13765, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36281836

ABSTRACT

Populus is a valuable and fast-growing tree species commonly cultivated for economic and scientific purposes. But most of the poplar species are sensitive to drought and salt stress. Thus, we compared the physiological effects of osmotic stress (PEG8000) and salt treatment (NaCl) on poplar roots to identify potential strategies for future breeding or genetic engineering approaches. We investigated root anatomy using epifluorescence microscopy, changes in root suberin composition and amount using gas chromatography, transcriptional reprogramming using RNA sequencing, and modifications of root transport physiology using a pressure chamber. Poplar roots reacted to the imposed stress conditions, especially in the developing younger root tip region, with remarkable differences between both types of stress. Overall, the increase in suberin content was surprisingly small, but the expression of key suberin biosynthesis genes was strongly induced. Significant reductions of the radial water transport in roots were only observed for the osmotic and not the hydrostatic hydraulic conductivity. Our data indicate that the genetic enhancement of root suberization processes in poplar might be a promising target to convey increased tolerance, especially against toxic sodium chloride.


Subject(s)
Populus , Populus/metabolism , Sodium Chloride/pharmacology , Sodium Chloride/metabolism , Meristem , Plant Roots/metabolism , Salt Stress , Water/metabolism
11.
Beilstein J Nanotechnol ; 13: 944-957, 2022.
Article in English | MEDLINE | ID: mdl-36161251

ABSTRACT

The cuticle with its superimposed epicuticular waxes represents the barrier of all aboveground parts of higher plant primary tissues. Epicuticular waxes have multiple effects on the interaction of plants with their living and non-living environment, whereby their shape, dimension, arrangement, and chemical composition play significant roles. Here, the ability of self-assembly of wax after isolation from the leaves was used to develop a small-scale wax-coated artificial leaf surface with the chemical composition and wettability of wheat (Triticum aestivum) leaves. By thermal evaporation of extracted plant waxes and adjustment of the evaporated wax amounts, the wettability and chemical character of the microstructure of the surface of wheat leaves were transferred onto a technical surface. For the use of these artificial leaves as a test system for biotic (e.g., germination of fungal pathogens) and non-biotic (e.g., applied surfactants) interactions on natural leaf surfaces, the chemical composition and the wetting behavior should be the same in both. Therefore, the morphology, chemistry, and wetting properties of natural and artificial surfaces with recrystallized wax structures were analyzed by scanning electron microscopy, gas chromatography-mass spectrometry, and by the determination of water contact angles, contact angle hysteresis, and tilting angles. Wheat leaves of different ages were covered exclusively with wax platelets. The extracted wheat wax was composed of alcohols, aldehydes, esters, and acids. The main component was 1-octacosanol. The waxes recrystallized as three-dimensional structures on the artificial surfaces. The three tested wetting parameters resembled the ones of the natural surface, providing an artificial surface with the chemical information of epicuticular waxes and the wetting properties of a natural leaf surface.

12.
PLoS One ; 17(9): e0274733, 2022.
Article in English | MEDLINE | ID: mdl-36174078

ABSTRACT

Russeting is a cosmetic defect of some fruit skins. Russeting (botanically: induction of periderm formation) can result from various environmental factors including wounding and surface moisture. The objective was to compare periderms resulting from wounding with those from exposure to moisture in developing apple fruit. Wounding or moisture exposure both resulted in cuticular microcracking. Cross-sections revealed suberized hypodermal cell walls by 4 d, and the start of periderm formation by 8 d after wounding or moisture treatment. The expression of selected target genes was similar in wound and moisture induced periderms. Transcription factors involved in the regulation of suberin (MYB93) and lignin (MYB42) synthesis, genes involved in the synthesis (CYP86B1) and the transport (ABCG20) of suberin monomers and two uncharacterized transcription factors (NAC038 and NAC058) were all upregulated in induced periderm samples. Genes involved in cutin (GPAT6, SHN3) and wax synthesis (KCS10, WSD1, CER6) and transport of cutin monomers and wax components (ABCG11) were all downregulated. Levels of typical suberin monomers (ω-hydroxy-C20, -C22 and -C24 acids) and total suberin were high in the periderms, but low in the cuticle. Periderms were induced only when wounding occurred during early fruit development (32 and 66 days after full bloom (DAFB)) but not later (93 DAFB). Wound and moisture induced periderms are very similar morphologically, histologically, compositionally and molecularly.


Subject(s)
Malus , Fruit/genetics , Gene Expression , Lignin , Malus/genetics , Transcription Factors/genetics
13.
Planta ; 256(3): 60, 2022 Aug 21.
Article in English | MEDLINE | ID: mdl-35988126

ABSTRACT

MAIN CONCLUSION: The efficiency of suberized plant/environment interfaces as transpiration barriers is not established by the suberin polymer but by the wax molecules sorbed to the suberin polymer. Suberized cell walls formed as barriers at the plant/soil or plant/atmosphere interface in various plant organs (soil-grown roots, aerial roots, tubers, and bark) were enzymatically isolated from five different plant species (Clivia miniata, Monstera deliciosa, Solanum tuberosum, Manihot esculenta, and Malus domestica). Anatomy, chemical composition and efficiency as transpiration barriers (water loss in m s-1) of the different suberized cell wall samples were quantified. Results clearly indicated that there was no correlation between barrier properties of the suberized interfaces and the number of suberized cell layers, the amount of soluble wax and the amounts of suberin. Suberized interfaces of C. miniata roots, M. esculenta roots, and M. domestica bark periderms formed poor or hardly any transpiration barrier. Permeances varying between 1.1 and 5.1 × 10-8 m s-1 were very close to the permeance of water (7.4 × 10-8 m s-1) evaporating from a water/atmosphere interface. Suberized interfaces of aerial roots of M. deliciosa and tubers of S. tuberosum formed reasonable transpiration barriers with permeances varying between 7.4 × 10-10 and 4.2 × 10-9 m s-1, which were similar to the upper range of permeances measured with isolated cuticles (about 10-9 m s-1). Upon wax extraction, permeances of M. deliciosa and S. tuberosum increased nearly tenfold, which proves the importance of wax establishing a transpiration barrier. Finally, highly opposite results obtained with M. esculenta and S. tuberosum periderms are discussed in relation to their agronomical importance for postharvest losses and tuber storage.


Subject(s)
Solanum tuberosum , Water , Permeability , Plants , Polymers , Soil
14.
Planta ; 256(2): 28, 2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35781548

ABSTRACT

KEY MESSAGE: AtMYB31, a R2R3-MYB transcription factor that modulates wax biosynthesis in reproductive tissues, is involved in seed development in Arabidopsis. R2R3-MYB transcription factors play important roles in plant development; yet, the exact role of each of them remains to be resolved. Here we report that the Arabidopsis AtMYB31 is required for wax biosynthesis in epidermis of reproductive tissues, and is involved in seed development. AtMYB31 was ubiquitously expressed in both vegetative and reproductive tissues with higher expression levels in siliques and seeds, while AtMYB31 was localized to the nucleus and cytoplasm. Loss of function of AtMYB31 reduced wax accumulation in the epidermis of silique and flower tissues, disrupted seed coat epidermal wall development and mucilage production, altered seed proanthocyanidin and polyester content. AtMYB31 could direct activate expressions of several wax biosynthetic target genes. Altogether, AtMYB31, a R2R3-MYB transcription factor, regulates seed development in Arabidopsis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Seeds , Transcription Factors/genetics , Transcription Factors/metabolism
15.
J Plant Physiol ; 275: 153759, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35820347

ABSTRACT

Shoot apical and lateral meristems play essential roles in the formation and development of primary and secondary growth in plants. A delicate regulatory mechanism is needed to maintain homeostatic balance between the primary and secondary growth, as well as the self-renewal of meristems with the rate of cell division and differentiation of new meristems. However, little is known about the roles of long non-coding RNAs (lncRNAs) in the regulation of maintenance and differentiation of primary and secondary growth in Populus, especially in the cambium division and differentiation into secondary xylem. Here, 1298 lncRNAs were identified both in the apical meristem and vascular cambium, with 80 lncRNAs being expressed only in shoot apical meristem and 45 only in vascular cambium. There are 410 differentially expressed lncRNAs in shoot apical meristem and vascular cambium, among which 271 lncRNAs were up-regulated and 139 were down-regulated in cambium. The GO enrichment analysis revealed that differentially expressed lncRNAs mainly influenced the expression of lncRNAs related to the ribosome pathway, plant hormone signal pathway and photosynthesis pathway. The differentially expressed lncRNAs mainly target mRNA through cis-regulation in the vascular cambium. In addition, six key lncRNAs and also their significantly upregulated target genes were identified. Theses target genes are involved in plant secondary metabolites, cellulose and lignin synthesis, hormone and signal transduction. In addition, six key lncRNAs were identified, their significantly upregulated target genes are related to plant secondary metabolites, cellulose and lignin synthesis, hormone and signal transduction. Investigating lncRNA-mRNA interactions, we further found some genes that may be related to the development of vascular cambium, such as domain-containing transcription factors, cellulose synthesis genes, calcium dependent protein kinase 2, cytokinin receptor 1, glycosyl transferase and polyphenol oxidase. Our findings provide new insights into the lncRNA-mRNA networks in the development of vascular cambium of secondary growth in Populus.


Subject(s)
Populus , RNA, Long Noncoding , Cambium , Gene Expression Regulation, Plant/genetics , Hormones/metabolism , Lignin/metabolism , Meristem/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Messenger/metabolism
16.
Physiol Plant ; 174(4): e13735, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35716005

ABSTRACT

The plant cuticle, which covers all aerial parts of plants in their primary developmental stage, is the major barrier against water loss from leaves. Accumulation of cutin and waxes has often been linked to drought tolerance. Here we investigated whether cutin and waxes play a role in the drought adaption of barley mimicked by osmotic stress acting on roots. We compared the cuticle properties of cultivated barley (Hordeum vulgare spp. vulgare) with wild barley (Hordeum vulgare spp. spontaneum), and tested whether wax and cutin composition or amount and cuticular transpiration could be future breeding targets for more drought-tolerant barley lines. In response to osmotic stress, accumulation of wax crystals was observed. This coincides with an increased wax and cutin gene expression and a total increase of wax and cutin amounts in leaves, which seems to be a general response triggered through root shoot signalling. Stomatal conductance decreased fast and significantly, whereas cuticular conductance remained unaffected in both wild and cultivated barley. The often-made conclusion that higher amounts of wax and cutin necessarily reduce cuticular transpiration and thus enhance drought tolerance is not always straightforward. To prevent water loss, stomatal regulation under water stress is much more important than regulation or adaptation of cuticular transpiration in response to drought.


Subject(s)
Hordeum , Droughts , Gene Expression Regulation, Plant , Hordeum/physiology , Membrane Lipids , Osmotic Pressure , Plant Leaves/physiology , Plant Transpiration/physiology , Waxes/metabolism
17.
ACS Appl Mater Interfaces ; 14(25): 28412-28426, 2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35604777

ABSTRACT

In times of a constantly growing world population and increasing demand for food, sustainable agriculture is crucial. The rainfastness of plant protection agents is of pivotal importance to reduce the amount of applied nutrients, herbicides, and fungicides. As a result of protective agent wash-off, plant protection is lost, and soils and groundwater are severely polluted. To date, rainfastness of plant protection products has been achieved by adding polymeric adjuvants to the agrochemicals. However, polymeric adjuvants will be regarded as microplastics in the future, and environmentally friendly alternatives are needed. Anchor peptides (APs) are promising biobased and biodegradable adhesion promoters. Although the adhesion of anchor peptides to artificial surfaces, such as polymers, has already been investigated in theory and experimentally, exploiting the adhesion to biological surfaces remains challenging. The complex nature and composition of biological surfaces such as plant leaves and fruit surfaces complicate the generation of accurate models. Here, we present the first detailed three-layered atomistic model of the surface of apple leaves and use it to compute free energy profiles of the adhesion and desorption of APs to and from that surface. Our model is validated by a novel fluorescence-based microtiter plate (MTP) assay that mimics these complex processes and allows for quantifying them. For the AP Macaque Histatin, we demonstrate that aromatic and positively charged amino acids are essential for binding to the waxy apple leaf surface. The established protocols should generally be applicable for tailoring the binding properties of APs to biological interfaces.


Subject(s)
Fungicides, Industrial , Plastics , Peptides/analysis , Plant Leaves/chemistry , Waxes/chemistry
18.
EMBO Rep ; 23(5): e52606, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35297148

ABSTRACT

Mitochondrial dysfunction can either extend or decrease Caenorhabditis elegans lifespan, depending on whether transcriptionally regulated responses can elicit durable stress adaptation to otherwise detrimental lesions. Here, we test the hypothesis that enhanced metabolic flexibility is sufficient to circumvent bioenergetic abnormalities associated with the phenotypic threshold effect, thereby transforming short-lived mitochondrial mutants into long-lived ones. We find that CEST-2.2, a carboxylesterase mainly localizes in the intestine, may stimulate the survival of mitochondrial deficient animals. We report that genetic manipulation of cest-2.2 expression has a minor lifespan impact on wild-type nematodes, whereas its overexpression markedly extends the lifespan of complex I-deficient gas-1(fc21) mutants. We profile the transcriptome and lipidome of cest-2.2 overexpressing animals and show that CEST-2.2 stimulates lipid metabolism and fatty acid beta-oxidation, thereby enhancing mitochondrial respiratory capacity through complex II and LET-721/ETFDH, despite the inherited genetic lesion of complex I. Together, our findings unveil a metabolic pathway that, through the tissue-specific mobilization of lipid deposits, may influence the longevity of mitochondrial mutant C. elegans.


Subject(s)
Caenorhabditis elegans Proteins , Longevity , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Lipid Metabolism/genetics , Longevity/genetics , Mitochondria/metabolism
19.
Plant Cell Environ ; 45(4): 1157-1171, 2022 04.
Article in English | MEDLINE | ID: mdl-35102563

ABSTRACT

The effect of contrasting environmental growth conditions (in vitro tissue culture, ex vitro acclimatisation, climate chamber, greenhouse and outdoor) on leaf development, cuticular wax composition, and foliar transpiration of detached leaves of the Populus × canescens clone 84 K were investigated. Our results show that total amounts of cuticular wax increased more than 10-fold when cultivated in different growth conditions, whereas qualitative wax composition did not change. With exception of plants directly taken from tissue culture showing rapid dehydration, rates of water loss (residual foliar transpiration) of intact but detached leaves were constant and independent from growth conditions and thus independent from increasing wax amounts. Since cuticular transpiration measured with isolated astomatous P. × canescens cuticles was identical to residual foliar transpiration rates of detached leaves, our results confirm that cuticular transpiration of P. × canescens leaves can be predicted with high accuracy from residual transpiration of detached leaves after stomatal closure. Our results convincingly show that more than 10-fold increased wax amounts in P. × canescens cuticles do not lead to decreased rates of residual (cuticular) transpiration.


Subject(s)
Plant Epidermis , Plant Transpiration , Plant Leaves , Water , Waxes
20.
Cells ; 11(4)2022 02 11.
Article in English | MEDLINE | ID: mdl-35203291

ABSTRACT

Non-coding RNA, known as long non-coding RNA (lncRNA), circular RNA (circRNA) and microRNA (miRNA), are taking part in the multiple developmental processes in plants. However, the roles of which played during the cambium activity periodicity of woody plants remain poorly understood. Here, lncRNA/circRNA-miRNA-mRNA regulatory networks of the cambium activity periodicity in Populus tomentosa was constructed, combined with morphologic observation and transcriptome profiling. Light microscopy and Periodic Acid Schiff (PAS) staining revealed that cell walls were much thicker and number of cell layers was increased during the active-dormant stage, accompanied by abundant change of polysaccharides. The novel lncRNAs and circRNAs were investigated, and we found that 2037 lncRNAs and 299 circRNAs were differentially expression during the vascular cambium period, respectively. Moreover, 1046 genes were identified as a target gene of 2037 novel lncRNAs, and 89 of which were the miRNA precursors or targets. By aligning miRNA precursors to the 7655 lncRNAs, 21 lncRNAs were identified as precursors tof 19 known miRNAs. Furthermore, the target mRNA of lncRNA/circRNA-miRNA network mainly participated in phytohormone, cell wall alteration and chlorophyll metabolism were analyzed by GO enrichment and KEGG pathway. Especially, circRNA33 and circRNA190 taking part in the phytohormone signal pathway were down-regulated during the active-dormant transition. Xyloglucan endotransglucosylase/hydrolase protein 24-like and UDP-glycosyltransferase 85A1 involved in the cell wall modification were the targets of lncRNA MSTRG.11198.1 and MSTRG.1050.1. Notably, circRNA103 and MSTRG.10851.1 regulate the cambium periodicity may interact with the miR482. These results give a new light into activity-dormancy regulation, associated with transcriptional dynamics and non-coding RNA networks of potential targets identification.


Subject(s)
MicroRNAs , Populus , RNA, Long Noncoding , Cambium/genetics , Cambium/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Plant Growth Regulators/metabolism , Populus/genetics , Populus/metabolism , RNA, Circular/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...