Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Sci Med Sport ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38643061

ABSTRACT

OBJECTIVES: This study aims to identify the optimal method for determining V̇O2max in competitive swimmers in terms of validity and test-retest reliability. DESIGN: Controlled experiment. METHODS: Twenty competitive swimmers performed four maximal incremental exercise tests: cycling, arm cranking, ergometer swimming, and tethered swimming. Gas analysis was conducted to estimate V̇O2max. Validity was assessed in terms of the amount of variance of the performance on a 1500-m time trial explained by the estimated V̇O2max . Test-retest reliability was evaluated using the intraclass correlation coefficient (ICC). RESULTS: V̇O2max obtained from tethered swimming, ergometer swimming, and cycling explained a similar amount of variance of the 1500-m performance (R2 = 0.64, 0.64 and 0.65, respectively). However, ergometer swimming yielded significantly lower V̇O2max estimates (40.54 ±â€¯6.55 ml/kg/min) than tethered swimming (54.40 ±â€¯6.21 ml/kg/min) and cycling (54.39 ±â€¯5.63 ml/kg/min). Arm cranking resulted in both a lower explained variance (R2 = 0.41) and a significantly lower V̇O2max (43.14 ±â€¯7.81 ml/kg/min). Tethered swimming showed good reliability (ICC = 0.81). CONCLUSIONS: Bicycle and tethered swimming tests demonstrated high validity with comparable V̇O2max estimates, explaining a large proportion of differences in endurance performance. Choosing between these two methods involves a trade-off between a higher practical applicability and reliability of the bicycle test and the more sport-specific nature of the tethered swimming test.

2.
Front Sports Act Living ; 4: 958548, 2022.
Article in English | MEDLINE | ID: mdl-36213451

ABSTRACT

Although the tumble turn in swimming has been studied extensively, no consensus exists about which measure is best suited to capture its performance. The aim of this study was to better understand the implications of choosing a particular distance-based performance measure for assessing and investigating tumble turn performance in freestyle swimming. To this end, a large set of retrospective turn data consisting of 2,813 turns performed by 160 swimmers was analyzed statistically in three steps. First, a mixed-effects model was derived for the entire data set, which showed that both performance level and sex had clear effects on the distance-based performance measures and performance determining variables studied in the literature. Second, repeated measures correlations were calculated for the entire data set and four performance level- and sex-based subgroups to determine the level of association between the performance measures. This analysis revealed that the performance measures were strongly correlated (r > 0.84 and p < 0.05 for all possible pairs), largely independent of performance level and sex. This finding implies that the choice of performance measure is not very critical when one is interested solely in the overall performance. In the third and last step, mixed-effects models were derived for the performance measures of interest to establish the importance of different turn-related actions for each measure, again for both the entire data set and the four subgroups separately. The results of this analysis revealed that performance measures with short(er) distances are more sensitive to changes in the adaptation time and reflect the wall contact time better than performance measures with long(er) distances, which in contrast are more useful if the focus is on the approach speed prior to the turn. In this final analysis, various effects of performance level and sex were found on the technical execution of the tumble turn.

3.
Front Sports Act Living ; 4: 758095, 2022.
Article in English | MEDLINE | ID: mdl-35299670

ABSTRACT

To date, optimal propulsion in swimming has been studied predominantly using physical or computational models of the arm and seldom during real-life swimming. In the present study we examined the contributions of selected power, technique and anthropometric measures on sprint performance during arms-only front crawl swimming. To this end, 25 male adult competitive swimmers, equipped with markers on their arms and hands, performed four 25-m sprint trials, which were recorded on video. For the fastest trial of each swimmer, we determined the average swim speed as well as two technique variables: the average stroke width and average horizontal acceleration. Each participant also swam 10-12 trials over a custom-made system for measuring active drag, the MAD system. Since the propelling efficiency is 100% while swimming over the MAD system, the power output of the swimmer is fully used to overcome the drag acting on the body. The resulting speed thus represents the ratio between power output and drag. We included this power-to-drag ratio, the power output and the drag coefficient of the fastest trial on the MAD system in the analysis. Finally, the body height and hand surface area of each swimmer were determined as anthropometric variables. A model selection procedure was conducted to predict the swim speed from the two technique variables, three power variables and the two anthropometric variables. The ratio between power output and the drag was the only significant predictor of the maximal swimming speed (v = 0.86·power/drag). The variations in this ratio explained 65% of the variance in swimming performance. This indicates that sprint performance in arms-only front crawl swimming is strongly associated with the power-to-drag ratio and not with the isolated power variables and the anthropometric and technique variables selected in the present study.

4.
J Appl Biomech ; 33(1): 87-100, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27705060

ABSTRACT

In this paper, a literature review is presented regarding the hydrodynamic effects of different hand and arm movements during swimming with the aim to identify lacunae in current methods and knowledge, and to distil practical guidelines for coaches and swimmers seeking to increase swimming speed. Experimental and numerical studies are discussed, examining the effects of hand orientation, thumb position, finger spread, sculling movements, and hand accelerations during swimming, as well as unsteady properties of vortices due to changes in hand orientation. Collectively, the findings indicate that swimming speed may be increased by avoiding excessive sculling movements and by spreading the fingers slightly. In addition, it appears that accelerating the hands rather than moving them at constant speed may be beneficial, and that (in front crawl swimming) the thumb should be abducted during entry, catch, and upsweep, and adducted during the pull phase. Further experimental and numerical research is required to confirm these suggestions and to elucidate their hydrodynamic underpinnings and identify optimal propulsion techniques. To this end, it is necessary that the dynamical motion and resulting unsteady effects are accounted for, and that flow visualization techniques, force measurements, and simulations are combined in studying those effects.


Subject(s)
Arm/physiology , Athletic Performance/physiology , Hand/physiology , Hydrodynamics , Models, Biological , Movement/physiology , Swimming/physiology , Evidence-Based Medicine , Friction , Humans , Rheology/methods , Viscosity
5.
J Electromyogr Kinesiol ; 25(5): 808-14, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26159504

ABSTRACT

In the analysis of movement data it is common practice to use a low-pass filter in order to reduce measurement noise. However, the choice of a cut-off frequency is typically rather arbitrary. The aim of the present study was to evaluate a new method to find the optimal cut-off frequency for filtering kinematic data. In particular, we propose to use rigid marker clusters to determine the dynamic precision of a given 3D motion analysis system, and to use this precision as criterion to find the optimal cut-off frequency for filtering the data. We tested this method using a model-based approach in a situation in which measurement noise is a serious concern, namely the registration of the kinematics of swimming using a video-based motion analysis system. For the model data we found that filtering the data with a single cutoff frequency of 6Hz under some conditions decreased the accuracy of the reconstruction of the kinematics compared to using the unfiltered data. If the cut-off frequency was used that yielded optimal dynamic precision, then the accuracy improved by 29% compared to using raw data irrespective of the cluster position, close to the optimal accuracy improvement of 30%. We confirmed in an experiment that the cut-off frequency at which optimal precision was found varied between cluster positions and subjects, similar to the results obtained with the model. We conclude that 3D motion analysis systems can be made more accurate by optimising the cut-off frequency used in filtering the data with regard to their precision. Furthermore, the dynamic precision method seems useful to evaluate the effect of various filtering procedures.


Subject(s)
Algorithms , Imaging, Three-Dimensional/methods , Movement , Adult , Biomechanical Phenomena , Humans , Imaging, Three-Dimensional/standards , Male , Motion , Muscle, Skeletal/physiology , Signal-To-Noise Ratio
6.
Work ; 41 Suppl 1: 4025-30, 2012.
Article in English | MEDLINE | ID: mdl-22317338

ABSTRACT

In competitive swimming, suits have become more important. These suits influence friction, pressure and wave drag. Friction drag is related to the surface properties whereas both pressure and wave drag are greatly influenced by body shape. To find a relationship between the body shape and the drag, the anthropometry of several world class female swimmers wearing different suits was accurately defined using a 3D scanner and traditional measuring methods. The 3D scans delivered more detailed information about the body shape. On the same day the swimmers did performance tests in the water with the tested suits. Afterwards the result of the performance tests and the differences found in body shape was analyzed to determine the deformation caused by a swimsuit and its effect on the swimming performance. Although the amount of data is limited because of the few test subjects, there is an indication that the deformation of the body influences the swimming performance.


Subject(s)
Anthropometry/methods , Clothing , Swimming , Athletic Performance , Female , Friction , Humans , Imaging, Three-Dimensional , Waist Circumference
7.
Eur J Appl Physiol ; 108(2): 247-55, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19777253

ABSTRACT

We hypothesized that maximal unilateral isometric knee extensor torque, the rate of torque development during maximally fast isometric contractions and unilateral squat jump performance would be better with the dominant than non-dominant leg. Limb dominancy was established using the step up, balance recovery, and ball kick test. On two days, eight men (21.5 +/- 2.2 years, means +/- SD) performed unilateral maximal isometric contractions with their knee extensors (120 degrees knee angle) with superimposed electrical stimulation to determine maximal torque and voluntary activation for both limbs. In addition, maximally fast isometric contractions without countermovement and unilateral squat jumps (SJ) starting from 120 degrees knee angles were performed. Torque time integral (contractile impulse) over the first 40 ms after torque onset (TTI40) and maximal rates of torque development (MRTD) during voluntary and maximal electrical nerve stimulation were used to quantify initial torque rise. Limb dominancy tests were very consistent, but none of the parameters was (or tended to be) significantly different between limbs, neither during maximal electrical stimulation nor during voluntary attempts. Between limbs there were significant relationships for voluntary TTI40 (r (2) = 0.94) and maximal SJ height (r (2) = 0.88) and both parameters were significantly related in both limbs (r (2) = 0.69 and 0.75). In conclusion, unilateral fast torque generating capacity, muscle activation and squat jump performance were similar in both limbs, but differed substantially among subjects, with strong correlations between fast voluntary isometric torque development and jump height. These findings further challenge the concept of lower limb dominancy in dynamometry testing in sports and rehabilitation.


Subject(s)
Isometric Contraction/physiology , Knee Joint/physiology , Lower Extremity/physiology , Adult , Electromyography , Humans , Male , Muscle, Skeletal/physiology , Task Performance and Analysis , Torque
SELECTION OF CITATIONS
SEARCH DETAIL
...