Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Neurosci Lett ; 709: 134368, 2019 09 14.
Article in English | MEDLINE | ID: mdl-31299286

ABSTRACT

Development of the brain prenatally is affected by maternal experience and exposure. Prenatal maternal psychological stress changes brain development and results in increased risk for neuropsychiatric disorders. In this review, multiple levels of prenatal stress mechanisms (offspring brain, placenta, and maternal physiology) are discussed and their intersection with cellular stress mechanisms explicated. Heat shock factors and oxidative stress are closely related to each other and converge with the inflammation, hormones, and cellular development that have been more deeply explored as the basis of prenatal stress risk. Increasing evidence implicates cellular stress mechanisms in neuropsychiatric disorders associated with prenatal stress including affective disorders, schizophrenia, and child-onset psychiatric disorders. Heat shock factors and oxidative stress also have links with the mechanisms involved in other kinds of prenatal stress including external exposures such as environmental toxicants and internal disruptions such as preeclampsia. Integrative understanding of developmental neurobiology with these cellular and physiological mechanisms is necessary to reduce risks and promote healthy brain development.


Subject(s)
Brain/metabolism , Heat-Shock Proteins/metabolism , Heat-Shock Response/physiology , Oxidative Stress/physiology , Prenatal Exposure Delayed Effects/metabolism , Stress, Psychological/metabolism , Animals , Brain/growth & development , Female , Humans , Pregnancy , Prenatal Exposure Delayed Effects/etiology , Prenatal Exposure Delayed Effects/psychology , Stress, Psychological/complications , Stress, Psychological/psychology
2.
ACS Chem Neurosci ; 10(3): 1595-1602, 2019 03 20.
Article in English | MEDLINE | ID: mdl-30421909

ABSTRACT

Compounds targeting the sigma 2 receptor, which we recently cloned and showed to be identical with transmembrane protein 97 (σ2R/TMEM97), are broadly applicable therapeutic agents currently in clinical trials for imaging in breast cancer and for treatment of Alzheimer's disease and schizophrenia. These promising applications coupled with our previous observation that the σ2R/TMEM97 modulator SAS-0132 has neuroprotective attributes and improves cognition in wild-type mice suggests that modulating σ2R/TMEM97 may also have therapeutic benefits in other neurodegenerative conditions such as traumatic brain injury (TBI). Herein, we report that DKR-1677, a novel derivative of SAS-0132 with increased affinity and selectivity for σ2R/Tmem97 ( Ki = 5.1 nM), is neuroprotective after blast-induced and controlled cortical impact (CCI) TBI in mice. Specifically, we discovered that treatment with DKR-1677 decreases axonal degeneration after blast-induced TBI and enhances survival of cortical neurons and oligodendrocytes after CCI injury. Furthermore, treatment with DKR-1677 preserves cognition in the Morris water maze after blast TBI. Our results support an increasingly broad role for σ2R/Tmem97 modulation in neuroprotection and suggest a new approach for treating patients suffering from TBI.


Subject(s)
Brain Injuries, Traumatic/drug therapy , Membrane Proteins/drug effects , Neuroprotective Agents/pharmacology , Receptors, sigma/drug effects , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Cognition/drug effects , Disease Models, Animal , Neurons/drug effects
3.
New Phytol ; 200(3): 788-795, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23638943

ABSTRACT

Increasing atmospheric CO2 concentrations alter leaf physiology, with effects that cascade to communities and ecosystems. Yet, responses over cycles of disturbance and recovery are not well known, because most experiments span limited ecological time. We examined the effects of CO2 on root growth, herbivory and arthropod biodiversity in a woodland from 1996 to 2006, and the legacy of CO2 enrichment on these processes during the year after the CO2 treatment ceased. We used minirhizotrons to study root growth, leaf censuses to study herbivory and pitfall traps to determine the effects of elevated CO2 on arthropod biodiversity. Elevated CO2 increased fine root biomass, but decreased foliar nitrogen and herbivory on all plant species. Insect biodiversity was unchanged in elevated CO2. Legacy effects of elevated CO2 disappeared quickly as fine root growth, foliar nitrogen and herbivory levels recovered in the next growing season following the cessation of elevated CO2. Although the effects of elevated CO2 cascade through plants to herbivores, they do not reach other trophic levels, and biodiversity remains unchanged. The legacy of 10 yr of elevated CO2 on plant-herbivore interactions in this system appear to be minimal, indicating that the effects of elevated CO2 may not accumulate over cycles of disturbance and recovery.


Subject(s)
Carbon Dioxide/metabolism , Ecosystem , Herbivory , Insecta , Plant Roots/growth & development , Quercus/physiology , Trees/physiology , Animals , Atmosphere , Biodiversity , Biomass , Nitrogen/metabolism , Plant Leaves/metabolism , Quercus/growth & development , Quercus/metabolism , Seasons , Trees/growth & development , Trees/metabolism
4.
New Phytol ; 200(3): 778-787, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23528147

ABSTRACT

Uncertainty surrounds belowground plant responses to rising atmospheric CO2 because roots are difficult to measure, requiring frequent monitoring as a result of fine root dynamics and long-term monitoring as a result of sensitivity to resource availability. We report belowground plant responses of a scrub-oak ecosystem in Florida exposed to 11 yr of elevated atmospheric CO2 using open-top chambers. We measured fine root production, turnover and biomass using minirhizotrons, coarse root biomass using ground-penetrating radar and total root biomass using soil cores. Total root biomass was greater in elevated than in ambient plots, and the absolute difference was larger than the difference aboveground. Fine root biomass fluctuated by more than a factor of two, with no unidirectional temporal trend, whereas leaf biomass accumulated monotonically. Strong increases in fine root biomass with elevated CO2 occurred after fire and hurricane disturbance. Leaf biomass also exhibited stronger responses following hurricanes. Responses after fire and hurricanes suggest that disturbance promotes the growth responses of plants to elevated CO2. Increased resource availability associated with disturbance (nutrients, water, space) may facilitate greater responses of roots to elevated CO2. The disappearance of responses in fine roots suggests limits on the capacity of root systems to respond to CO2 enrichment.


Subject(s)
Biomass , Carbon Dioxide/metabolism , Ecosystem , Environment , Plant Roots/growth & development , Quercus/growth & development , Trees/growth & development , Atmosphere , Cyclonic Storms , Fires , Florida , Plant Leaves/growth & development , Plant Roots/metabolism , Quercus/metabolism , Trees/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...