Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 4688, 2021 08 03.
Article in English | MEDLINE | ID: mdl-34344896

ABSTRACT

Internalization and intracellular trafficking of G protein-coupled receptors (GPCRs) play pivotal roles in cell responsiveness. Dysregulation in receptor trafficking can lead to aberrant signaling and cell behavior. Here, using an endosomal BRET-based assay in a high-throughput screen with the prototypical GPCR angiotensin II type 1 receptor (AT1R), we sought to identify receptor trafficking inhibitors from a library of ~115,000 small molecules. We identified a novel dual Ras and ARF6 inhibitor, which we named Rasarfin, that blocks agonist-mediated internalization of AT1R and other GPCRs. Rasarfin also potently inhibits agonist-induced ERK1/2 signaling by GPCRs, and MAPK and Akt signaling by EGFR, as well as prevents cancer cell proliferation. In silico modeling and in vitro studies reveal a unique binding modality of Rasarfin within the SOS-binding domain of Ras. Our findings unveil a class of dual small G protein inhibitors for receptor trafficking and signaling, useful for the inhibition of oncogenic cellular responses.


Subject(s)
ADP-Ribosylation Factors/antagonists & inhibitors , Endocytosis/drug effects , Enzyme Inhibitors/pharmacology , Receptors, G-Protein-Coupled/metabolism , ras Proteins/antagonists & inhibitors , ADP-Ribosylation Factor 6 , ADP-Ribosylation Factors/metabolism , Binding Sites , Bioluminescence Resonance Energy Transfer Techniques , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Discovery , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , HEK293 Cells , Humans , Molecular Dynamics Simulation , Receptor Protein-Tyrosine Kinases/metabolism , Signal Transduction/drug effects , ras Proteins/chemistry , ras Proteins/metabolism
2.
RSC Med Chem ; 11(11): 1285-1294, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-34085042

ABSTRACT

The lifetime of a binary drug-target complex is increasingly acknowledged as an important parameter for drug efficacy and safety. With a better understanding of binding kinetics and better knowledge about kinetic parameter optimization, intentionally induced prolongation of the drug-target residence time through structural changes of the ligand could become feasible. In this study we assembled datasets from 21 publications and the K4DD (Kinetic for Drug Discovery) database to conduct large scale data analysis. This resulted in 3812 small molecules annotated to 78 different targets from five protein classes (GPCRs: 273, kinases: 3238, other enzymes: 240, HSPs: 160, ion channels: 45). Performing matched molecular pair (MMP) analysis to further investigate the structure-kinetic relationship (SKR) in this data collection allowed us to identify a fundamental contribution of a ligand's polarity to its association rate, and in selected cases, also to its dissociation rate. However, we furthermore observed that the destabilization of the transition state introduced by increased polarity is often accompanied by simultaneous destabilization of the ground state resulting in an unaffected or even worsened residence time. Supported by a set of case studies, we provide concepts on how to alter ligands in ways to trigger on-rates, off-rates, or both.

3.
Prog Chem Org Nat Prod ; 110: 99-141, 2019.
Article in English | MEDLINE | ID: mdl-31621012

ABSTRACT

Pharmacophore-based techniques currently are an integral part of many computer-aided drug design workflows and have been successfully and extensively applied for tasks such as virtual screening, de novo design, and lead optimization. Pharmacophore models can be derived both in a receptor-based and in a ligand-based manner, and provide an abstract description of essential non-bonded interactions that typically occur between small-molecule ligands and macromolecular targets. Due to their simplistic and abstract nature, pharmacophores are both perfectly suited for efficient computer processing and easy to comprehend by life and physical scientists. As a consequence, they have also proven to be a valuable tool for communicating between computational and medicinal chemists.This chapter aims to provide a short overview of the pharmacophore concept and its applications in modern computer-aided drug design. The chapter is divided into three distinct parts. The first section contains a brief introduction to the pharmacophore concept. The second section provides a description of the most common nonbonded interaction types and their representation as pharmacophoric features. Furthermore, it gives an overview of the various methods for pharmacophore generation and important pharmacophore-based techniques in drug design. This part concludes with examples for recent pharmacophore concept-related research and development. The last section is dedicated to a review of research in the field of natural product chemistry as carried out by employing pharmacophore-based drug design methods.


Subject(s)
Chemistry, Pharmaceutical , Computer-Aided Design , Drug Design , Biological Products/chemistry , Ligands , Receptors, Drug
4.
J Chem Inf Model ; 59(1): 535-549, 2019 01 28.
Article in English | MEDLINE | ID: mdl-30500211

ABSTRACT

Computational approaches currently assist medicinal chemistry through the entire drug discovery pipeline. However, while several computational tools and strategies are available to predict binding affinity, predicting the drug-target binding kinetics is still a matter of ongoing research. Here, we challenge scaled molecular dynamics simulations to assess the off-rates for a series of structurally diverse inhibitors of the heat shock protein 90 (Hsp90) covering 3 orders of magnitude in their experimental residence times. The derived computational predictions are in overall good agreement with experimental data. Aside from the estimation of exit times, unbinding pathways were assessed through dimensionality reduction techniques. The data analysis framework proposed in this work could lead to better understanding of the mechanistic aspects related to the observed kinetic behavior.


Subject(s)
HSP90 Heat-Shock Proteins/metabolism , Molecular Dynamics Simulation , Pharmaceutical Preparations/metabolism , HSP90 Heat-Shock Proteins/chemistry , Humans , Kinetics , Ligands , Protein Binding , Protein Conformation
5.
J Chem Theory Comput ; 14(9): 4958-4970, 2018 Sep 11.
Article in English | MEDLINE | ID: mdl-30075621

ABSTRACT

In the absence of experimentally derived, three-dimensional structures of receptors in complex with active ligands, it is of high value to be able to gain knowledge about energetically favorable interaction sites solely from the structure of the receptor binding site. For de novo ligand design as well as for lead optimization, this information retrieved from the protein is inevitable. The herein presented method called GRAIL combines the advantages of traditional grid-based approaches for the identification of interaction sites and the power of the pharmacophore concept. A reduced pharmacophoric abstraction of the target system enables the computation of all relevant interaction grid maps in short amounts of time. This allows one to extend the utility of a grid-based method for the analysis of large amounts of coordinate sets obtained by long-time MD simulations. In this way it is possible to assess conformation dependent characteristics of key interactions over time. Furthermore, conformational changes of the protein can be taken into account easily and information thus obtained well-guides a rational ligand design process. A study employing MD trajectories of the oncology target heat shock protein 90 showcases how well our novel approach GRAIL performs for a set of different inhibitors bound to their target protein and how molecular features of the inhibitors are subject to optimization.

6.
J Med Chem ; 61(10): 4397-4411, 2018 05 24.
Article in English | MEDLINE | ID: mdl-29701469

ABSTRACT

Residence time and more recently the association rate constant kon are increasingly acknowledged as important parameters for in vivo efficacy and safety of drugs. However, their broader consideration in drug development is limited by a lack of knowledge of how to optimize these parameters. In this study on a set of 176 heat shock protein 90 inhibitors, structure-kinetic relationships, X-ray crystallography, and molecular dynamics simulations were combined to retrieve a concrete scheme of how to rationally slow down on-rates. We discovered that an increased ligand desolvation barrier by introducing polar substituents resulted in a significant kon decrease. The slowdown was accomplished by introducing polar moieties to those parts of the ligand that point toward a hydrophobic cavity. We validated this scheme by increasing polarity of three Hsp90 inhibitors and observed a 9-, 13-, and 45-fold slowdown of on-rates and a 9-fold prolongation in residence time. This prolongation was driven by transition state destabilization rather than ground state stabilization.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , Drug Resistance, Neoplasm , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Molecular Dynamics Simulation , Binding Sites , Crystallography, X-Ray , HSP90 Heat-Shock Proteins/metabolism , Humans , Ligands , Models, Molecular , Molecular Structure , Protein Binding , Protein Conformation
7.
Drug Discov Today ; 22(6): 896-911, 2017 06.
Article in English | MEDLINE | ID: mdl-28412474

ABSTRACT

A considerable number of approved drugs show non-equilibrium binding characteristics, emphasizing the potential role of drug residence times for in vivo efficacy. Therefore, a detailed understanding of the kinetics of association and dissociation of a target-ligand complex might provide crucial insight into the molecular mechanism-of-action of a compound. This deeper understanding will help to improve decision making in drug discovery, thus leading to a better selection of interesting compounds to be profiled further. In this review, we highlight the contributions of the Kinetics for Drug Discovery (K4DD) Consortium, which targets major open questions related to binding kinetics in an industry-driven public-private partnership.


Subject(s)
Drug Discovery , Pharmaceutical Preparations/metabolism , Animals , Drug Industry , Humans , Kinetics , Pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...