Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Oncoimmunology ; 13(1): 2316945, 2024.
Article in English | MEDLINE | ID: mdl-38379869

ABSTRACT

Combinatorial strategies, such as targeting different immune checkpoint receptors, hold promise to increase the breadth and duration of the response to cancer therapy. Here we describe the preclinical evaluation of CTX-8371, a protein construct which combines PD-1 and PD-L1 targeting in one bispecific, tetravalent antibody. CTX-8371 matched or surpassed the activity of anti-PD-1 and PD-L1 benchmark antibodies in several in vitro T cell activation assays and outperformed clinically approved benchmarks in the subcutaneous MC38 colon and the B16F10 lung metastasis mouse tumor models. Investigation into the mechanism of action revealed that CTX-8371 co-engagement of PD-1 and PD-L1 induced the proteolytic cleavage and loss of cell surface PD-1, which is a novel and non-redundant mechanism that adds to the PD-1/PD-L1 signaling axis blockade. The combination of CTX-8371 and an agonistic anti-CD137 antibody further increased the anti-tumor efficacy with long-lasting curative therapeutic effect. In summary, CTX-8371 is a novel checkpoint inhibitor that might provide greater clinical benefit compared to current anti-PD-1 and PD-L1 antibodies, especially when combined with agents with orthogonal mechanisms of action, such as agonistic anti-CD137 antibodies.


Subject(s)
Antibodies, Bispecific , Lung Neoplasms , Mice , Animals , B7-H1 Antigen , Programmed Cell Death 1 Receptor , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , Lymphocyte Activation
2.
Amyloid ; 31(1): 22-31, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37530216

ABSTRACT

BACKGROUND: The significance of measuring 99mTc-labelled-3,3-diphosphono-1,2-propanodicarboxylic acid (99mTc-DPD) in transthyretin (ATTR) cardiac amyloidosis has not been adequately studied. This single-centre observational study evaluated the correlation between 99mTc-DPD scintigraphy and histological amyloid load in endomyocardial biopsy (EMB). METHODS: Twenty-eight patients with biopsy-proven ATTR amyloidosis and concomitantly available 99mTc-DPD scintigraphy were included. Visual Perugini scoring, and (semi-)quantitative analysis of cardiac 99mTc-DPD uptake by planar whole-body imaging and single photon emission computed tomography (SPECT/CT) using regions of interest (ROI) were performed. From this, heart-to-whole-body ratio (H/WB) and heart-to-contralateral-chest ratio (H/CL) were calculated. The histological amyloid load was quantified using two different staining methods. RESULTS: Increased cardiac tracer uptake was documented in all patients (planar: ROImean 129 ± 37 cps; SPECT/CT: ROImean 369 ± 142 cps). Histological amyloid load (19 ± 13%) significantly correlated with Perugini score (r = 0.69, p < .001) as well as with cardiac 99mTc-DPD uptake (planar: r = 0.64, p < .001; H/WB: r = 0.50, p = .014; SPECT/CT: r = 0.53, p = .008; H/CL: r = 0.43, p = .037) (results are shown for correlations with Congo Red-staining). CONCLUSION: In ATTR, cardiac 99mTc-DPD uptake significantly correlated with histological amyloid load in EMB. Further studies are needed to implement thresholds in cardiac 99mTc-DPD uptake measurements for risk stratification and guidance of therapy.


Subject(s)
Amyloid Neuropathies, Familial , Amyloidosis , Cardiomyopathies , Humans , Prealbumin , Organotechnetium Compounds , Tomography, X-Ray Computed , Amyloidosis/diagnostic imaging , Amyloid , Radionuclide Imaging , Amyloidogenic Proteins , Amyloid Neuropathies, Familial/diagnostic imaging , Cardiomyopathies/diagnostic imaging
3.
Eur Heart J Case Rep ; 7(9): ytad451, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37719003

ABSTRACT

Background: Unicentric Castleman's disease (UCD), a lymphoproliferative disorder characterized by enlargement of the lymph nodes, is a rare cause of Amyloid-A amyloidosis. While patients usually present with impaired kidney function and proteinuria, heart involvement is neither common nor the main cause of signs and symptoms. Case summary: We present a patient who was admitted to the hospital for impaired exercise capacity. Diagnostic work-up revealed severe left ventricular hypertrophy suggestive of cardiac amyloidosis. Although Congo red staining of endomyocardial biopsies was initially negative, subsequent immunohistochemical staining against serum amyloid A finally confirmed the diagnosis of cardiac amyloidosis. 18F-fluorodeoxyglucose positron emission tomography/computed tomography revealed a tumour located in dorsal of the duodenum. Fine-needle aspiration biopsy of the tumour was suggestive but could not confirm the presence of UCD beyond reasonable doubt. Rapid worsening of heart failure symptoms warranted urgent surgical tumourectomy, which resulted in immediate post-operative lowering of serum amyloid protein. However, post-operative cardiogenic shock could not be stabilized even with veno-arterial extracorporeal membrane oxygenation, and the patient eventually died. The UCD of the hyaline vascular (HV) subtype was confirmed by pathologic work-up of the excised tumour. Discussion: This case report presents for the first time a patient with malignant cardiac Amyloid-A amyloidosis caused by unicentric Castleman's disease of the HV subtype. Since the disease progresses swiftly, rapid diagnosis is essential for potential curative treatment.

5.
Nat Metab ; 5(3): 495-515, 2023 03.
Article in English | MEDLINE | ID: mdl-36941451

ABSTRACT

Muscle degeneration is the most prevalent cause for frailty and dependency in inherited diseases and ageing. Elucidation of pathophysiological mechanisms, as well as effective treatments for muscle diseases, represents an important goal in improving human health. Here, we show that the lipid synthesis enzyme phosphatidylethanolamine cytidyltransferase (PCYT2/ECT) is critical to muscle health. Human deficiency in PCYT2 causes a severe disease with failure to thrive and progressive weakness. pcyt2-mutant zebrafish and muscle-specific Pcyt2-knockout mice recapitulate the participant phenotypes, with failure to thrive, progressive muscle weakness and accelerated ageing. Mechanistically, muscle Pcyt2 deficiency affects cellular bioenergetics and membrane lipid bilayer structure and stability. PCYT2 activity declines in ageing muscles of mice and humans, and adeno-associated virus-based delivery of PCYT2 ameliorates muscle weakness in Pcyt2-knockout and old mice, offering a therapy for individuals with a rare disease and muscle ageing. Thus, PCYT2 plays a fundamental and conserved role in vertebrate muscle health, linking PCYT2 and PCYT2-synthesized lipids to severe muscle dystrophy and ageing.


Subject(s)
Failure to Thrive , RNA Nucleotidyltransferases , Animals , Humans , Mice , Mice, Knockout , Muscle Weakness/genetics , Muscles , RNA Nucleotidyltransferases/chemistry , RNA Nucleotidyltransferases/genetics , Zebrafish
6.
Mol Cancer Ther ; 22(1): 3-11, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36223541

ABSTRACT

The DLL/Notch signaling pathway plays an important role in cancer as a key driver in maintaining cancer stemness and inducing tumor angiogenesis. Many different types of DLL/Notch inhibitors have been developed and explored in clinical trials for cancer treatment, including small-molecule compounds to inhibit gamma-secretase and antibodies targeting Notch ligands or receptors. Despite promising efficacy of these inhibitors in preclinical studies, the overall clinical outcomes have been insufficient to advance to the next stage of clinical development primarily due to safety concerns or modest efficacy. To overcome the narrow therapeutic window of DLL/Notch inhibitors, diverse strategies for improving the balance between the safety and efficacy are currently being explored. Here, we review the clinical perspective and potential of DLL/Notch inhibitors as anticancer agents based on recent results from multiple clinical studies. An antibody specifically targeting Notch ligands or receptors may offer a better approach to reduce concerns about toxicity derived from broad-spectrum DLL/Notch blockers. In addition, combination therapy with an angiogenesis inhibitor targeting VEGF could be a better option for increasing anticancer efficacy. Taken together, the results of clinical trials suggest a bispecific antibody blocking the DLL/Notch and VEGF/VEGFR signaling pathways as a promising approach for effective anticancer treatment.


Subject(s)
Neoplasms , Vascular Endothelial Growth Factor A , Humans , Ligands , Receptors, Notch/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Signal Transduction
7.
J Nucl Cardiol ; 30(4): 1420-1426, 2023 08.
Article in English | MEDLINE | ID: mdl-35581484

ABSTRACT

We identified two patients with transthyretin (ATTR) amyloid myopathy (one ATTR variant amyloidosis, ATTRv; one wild-type ATTR amyloidosis, ATTRwt). Myopathy was the initial manifestation in ATTRwt, whereas it followed neuropathy and cardiomyopathy in ATTRv. The ATTRwt patient showed muscular tracer uptake on 99mTc-DPD planar scintigraphy at the time of initial diagnosis, consistent with ATTR amyloid myopathy. The ATTRv patient underwent heart transplantation because of progressive heart failure. Within the next two years, progressive myopathic symptoms and extracardiac tracer uptake on 99mTc-DPD planar scintigraphy were documented, attributable to ATTR amyloid myopathy. Interstitial amyloid deposits were confirmed by muscle biopsy in both patients, with a particularly high amyloid burden in the adipose tissue. This case report highlights the frequent concomitant presence of cardiac ATTR amyloidosis and ATTR amyloid myopathy. ATTR amyloid myopathy may precede cardiac manifestation in ATTRwt or occur after heart transplantation in ATTRv. Due to the high diagnostic accuracy of 99mTc-DPD scintigraphy for detecting ATTR amyloid myopathy and the emergence of novel therapeutics, it is important to increase the awareness of its presence.


Subject(s)
Amyloid Neuropathies, Familial , Cardiomyopathies , Muscular Diseases , Humans , Amyloid Neuropathies, Familial/complications , Amyloid Neuropathies, Familial/diagnostic imaging , Cardiomyopathies/diagnostic imaging , Cardiomyopathies/complications , Muscular Diseases/complications , Amyloid , Prealbumin
8.
Eur Heart J ; 43(28): 2698-2709, 2022 07 21.
Article in English | MEDLINE | ID: mdl-35417553

ABSTRACT

AIMS: Newborn mice and humans display transient cardiac regenerative potential that rapidly declines postnatally. Patients who survive a myocardial infarction (MI) often develop chronic heart failure due to the heart's poor regeneration capacity. We hypothesized that the cardiac 'regenerative-to-scarring' transition might be driven by the perinatal shifts observed in the circulating T-cell compartment. METHODS AND RESULTS: Post-MI immune responses were characterized in 1- (P1) vs. 7-day-old (P7) mice subjected to left anterior descending artery ligation. Myocardial infarction induced robust early inflammatory responses (36 h post-MI) in both age groups, but neonatal hearts exhibited rapid resolution of inflammation and full functional recovery. The perinatal loss of myocardial regenerative capacity was paralleled by a baseline increase in αß-T cell (CD4+ and CD8+) numbers. Strikingly, P1-infarcted mice reconstituted with adult T-cells shifted to an adult-like healing phenotype, marked by irreversible cardiac functional impairment and increased fibrosis. Infarcted neonatal mice harbouring adult T-cells also had more monocyte-derived macrophage recruitment, as typically seen in adults. At the transcriptome level, infarcted P1 hearts that received isolated adult T-cells showed enriched gene sets linked to fibrosis, inflammation, and interferon-gamma (IFN-γ) signalling. In contrast, newborn mice that received isolated Ifng-/- adult T-cells prior to MI displayed a regenerative phenotype that resembled that of its age-matched untreated controls. CONCLUSION: Physiological T-cell development or adoptive transfer of adult IFN-γ-producing T-cells into neonates contributed to impaired cardiac regeneration and promoted irreversible structural and functional cardiac damage. These findings reveal a trade-off between myocardial regenerative potential and the development of T-cell competence.


Subject(s)
Myocardial Infarction , Myocytes, Cardiac , Adult , Animals , Disease Models, Animal , Female , Fibrosis , Humans , Inflammation/pathology , Interferon-gamma , Mice , Myocardium/pathology , Myocytes, Cardiac/physiology , Pregnancy , Regeneration/physiology
10.
Mol Cell ; 81(12): 2520-2532.e16, 2021 06 17.
Article in English | MEDLINE | ID: mdl-33930333

ABSTRACT

The tRNA ligase complex (tRNA-LC) splices precursor tRNAs (pre-tRNA), and Xbp1-mRNA during the unfolded protein response (UPR). In aerobic conditions, a cysteine residue bound to two metal ions in its ancient, catalytic subunit RTCB could make the tRNA-LC susceptible to oxidative inactivation. Here, we confirm this hypothesis and reveal a co-evolutionary association between the tRNA-LC and PYROXD1, a conserved and essential oxidoreductase. We reveal that PYROXD1 preserves the activity of the mammalian tRNA-LC in pre-tRNA splicing and UPR. PYROXD1 binds the tRNA-LC in the presence of NAD(P)H and converts RTCB-bound NAD(P)H into NAD(P)+, a typical oxidative co-enzyme. However, NAD(P)+ here acts as an antioxidant and protects the tRNA-LC from oxidative inactivation, which is dependent on copper ions. Genetic variants of PYROXD1 that cause human myopathies only partially support tRNA-LC activity. Thus, we establish the tRNA-LC as an oxidation-sensitive metalloenzyme, safeguarded by the flavoprotein PYROXD1 through an unexpected redox mechanism.


Subject(s)
Oxidoreductases Acting on Sulfur Group Donors/metabolism , RNA Ligase (ATP)/metabolism , RNA, Transfer/metabolism , Animals , Antioxidants/physiology , Catalytic Domain , Female , HeLa Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , NAD/metabolism , NADP/metabolism , Oxidation-Reduction , Oxidoreductases/metabolism , Oxidoreductases Acting on Sulfur Group Donors/physiology , RNA Ligase (ATP)/chemistry , RNA Ligase (ATP)/genetics , RNA Splicing/genetics , RNA Splicing/physiology , Unfolded Protein Response/physiology , X-Box Binding Protein 1/metabolism
11.
Sci Rep ; 10(1): 19686, 2020 11 12.
Article in English | MEDLINE | ID: mdl-33184414

ABSTRACT

Sodium glucose transporter (SGLT)-2 inhibitors have consistently shown cardioprotective effects independent of the glycemic status of treated patients. In this study we aimed to investigate underlying mechanisms of short-term empagliflozin treatment in a mouse model of type II diabetes. Male db/db mice were fed a western type diet with or without enrichment with empagliflozin for 7 days. While glucose tolerance was significantly improved in empagliflozin treated mice, body weight and fasting insulin levels were comparable in both groups. Cardiac insulin signaling activity indicated by reduced proteinkinase B (AKT) phosphorylation was significantly decreased in the empagliflozin treated group. Remarkably, mitochondrial mass estimated by citrate synthase activity was significantly elevated in empagliflozin treated mice. Accordingly, mitochondrial morphology was significantly altered upon treatment with empagliflozin as analysed by transmission electron microscopy. Additionally, short-term empagliflozin therapy was associated with a changed cardiac tissue cytokine expression in favor of an anti-inflammatory pattern. Our data suggest that early cardioprotection in empagliflozin treated mice is independent of a reduction in body weight or hyperinsulinemia. Ameliorated mitochondrial ultrastructure, attenuated cardiac insulin signaling and diminished cardiac inflammation might contribute to the cardioprotective effects of empagliflozin.


Subject(s)
Benzhydryl Compounds/administration & dosage , Cardiotonic Agents/administration & dosage , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Diet, Western/adverse effects , Glucosides/administration & dosage , Animals , Benzhydryl Compounds/pharmacology , Body Weight/drug effects , Cardiotonic Agents/pharmacology , Citrate (si)-Synthase/metabolism , Cytokines/metabolism , Gene Expression Regulation/drug effects , Glucosides/pharmacology , Male , Mice , Myocardium/metabolism , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Treatment Outcome
12.
JCI Insight ; 5(5)2020 03 12.
Article in English | MEDLINE | ID: mdl-32161196

ABSTRACT

CD137 (4-1BB) is a member of the TNFR superfamily that represents a promising target for cancer immunotherapy. Recent insights into the function of TNFR agonist antibodies implicate epitope, affinity, and IgG subclass as critical features, and these observations help explain the limited activity and toxicity seen with clinically tested CD137 agonists. Here, we describe the preclinical characterization of CTX-471, a fully human IgG4 agonist of CD137 that engages a unique epitope that is shared by human, cynomolgus monkey, and mouse and is associated with a differentiated pharmacology and toxicology profile. In vitro, CTX-471 increased IFN-γ production by human T cells in an Fcγ receptor-dependent (FcγR-dependent) manner, displaying an intermediate level of activity between 2 clinical-stage anti-CD137 antibodies. In mice, CTX-471 exhibited curative monotherapy activity in various syngeneic tumor models and showed a unique ability to cure mice of very large (~500 mm3) tumors compared with validated antibodies against checkpoints and TNFR superfamily members. Extremely high doses of CTX-471 were well tolerated, with no signs of hepatic toxicity. Collectively, these data demonstrate that CTX-471 is a unique CD137 agonist that displays an excellent safety profile and an unprecedented level of monotherapy efficacy against very large tumors.


Subject(s)
Antibodies, Monoclonal/immunology , Immunotherapy/methods , Neoplasms/therapy , Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology , Animals , CD8-Positive T-Lymphocytes/metabolism , Chemical and Drug Induced Liver Injury/prevention & control , Epitope Mapping , Gene Expression Profiling , HEK293 Cells , Humans , Immunotherapy/adverse effects , Lymphocyte Activation , Lymphocytes, Tumor-Infiltrating/metabolism , Macaca fascicularis , Mice , Mice, Nude , Neoplasms/immunology , T-Lymphocytes/immunology , Tumor Necrosis Factor Receptor Superfamily, Member 9/chemistry , Xenograft Model Antitumor Assays
13.
Int J Mol Sci ; 20(8)2019 Apr 23.
Article in English | MEDLINE | ID: mdl-31018503

ABSTRACT

Obesity is a well-described risk factor resulting in premature aging of the cardiovascular system ultimately limiting longevity. Premature cardiac death and aging is the hallmark of Hutchinson-Gilford syndrome (HGPS), a disease caused by defined mutations in the lamin A gene leading to a shortened prelamin A protein known as progerin. Since small amounts of progerin are expressed in healthy individuals we aimed to investigate the association of Body-Mass-Index (BMI) with respect to expression of progerin mRNA in blood samples of patient with known cardiovascular disease. In this cross-sectional retrospective analysis, 111 patients were consecutively included of which 46 were normal (BMI < 25 kg/m2) and 65 overweight (BMI ≥ 25.0 kg/m2). Blood samples were analyzed for quantitative expression of progerin mRNA. Progerin as well as high-sensitive C-Reactive Protein (hs-CRP) levels were significantly upregulated in the overweight group. Linear regression analyses showed a significant positive correlation of BMI and progerin mRNA (n = 111; r = 0.265, p = 0.005), as well as for hs-CRP (n = 110; r = 0.300, p = 0.001) and for Hb1Ac (n = 110; r = 0.336, p = 0.0003). Our data suggest that BMI strongly correlates with progerin mRNA expression and inflammation. Progerin might contribute to well described accelerated biologic aging in obese individuals.


Subject(s)
Lamin Type A/genetics , Overweight/genetics , RNA, Messenger/genetics , Up-Regulation , Adult , Aged , Aging, Premature/blood , Aging, Premature/genetics , Body Mass Index , Cross-Sectional Studies , Female , Humans , Inflammation/blood , Inflammation/genetics , Male , Middle Aged , Overweight/blood , RNA, Messenger/blood , Retrospective Studies
15.
Front Pharmacol ; 8: 740, 2017.
Article in English | MEDLINE | ID: mdl-29089894

ABSTRACT

Background: Calcitonin gene-related peptide (CGRP) is pivotal in the pathophysiology of migraine headaches and represents a promising target for migraine treatment. The humanized monoclonal antibody galcanezumab (LY2951742) binds to CGRP and may be effective in migraine prophylaxis. Objectives: The primary objective was to evaluate the safety and tolerability of single and multiple doses of galcanezumab in humans. Secondary objectives included assessing the pharmacokinetics and evaluating target engagement. Methods: A double-blind, randomized, placebo-controlled study (NCT 01337596) with single escalating and multiple subcutaneous (SC) doses of galcanezumab was performed in healthy male volunteers. Single doses of 1, 5, 25, 75, 200, and 600 mg of galcanezumab (n = 7/dose) or placebo (n = 2/dose) were injected SC in six consecutive cohorts of nine subjects each. One cohort of nine subjects received multiple (4) 150 mg doses of galcanezumab or placebo every other week. Target engagement was evaluated by measuring inhibition of capsaicin-induced increase in dermal blood flow (DBF). Findings: Sixty-three subjects were randomized and included in the safety analyses. Galcanezumab was well tolerated in single doses (1-600 mg SC) and consecutive doses (150 mg SC). There was no dose-dependent difference in type or frequency of treatment-emergent adverse events, and no clinically meaningful difference when compared with placebo. Pharmacokinetics were linear. Galcanezumab induced a robust, dose-dependent, and durable inhibition of capsaicin-induced increase in DBF, supporting the continued clinical development of galcanezumab for prophylaxis in migraine patients.

16.
Basic Res Cardiol ; 111(6): 64, 2016 11.
Article in English | MEDLINE | ID: mdl-27665606

ABSTRACT

Cardiac regeneration is one of the prime visions in cardiovascular research. The mouse neonatal apical resection and left anterior descending artery (LAD) ligation model introduced novel in vivo mammalian assays to study cardiac regeneration. However, recent reports and editorials discussed and critically questioned the value and technical reproducibility of the mouse neonatal myocardial infarction approach, making it paramount to develop and use a reproducible model system. We established a mouse neonatal myocardial infarction model by visually confirmed ligation of the LAD using microsurgery. TdT-mediated dUTP nick-end labeling (TUNEL) proved reproducible massive myocardial infarctions in a defined region of the apex and anterior wall of neonatal and 7-day-old mice. Whereas hearts ligated on postnatal day 7 displayed chronic injury, cardiac samples ligated immediately after birth always showed complete structural regeneration after long-term follow-up. Cardiac regeneration was observed in all mouse stains (C57BL/6J, ICR, and mixed background C57BL/6JxSv129) tested so far. We present a detailed in vivo protocol to study complex mechanisms of complete cardiac repair following ischemic cardiac damage. Neonatal LAD ligation surgery is feasible, and results in reproducible myocardial infarctions 24 h after ligation, and no structural myocardial defects are detectable following long-term follow-up. We encourage the cardiovascular community to use our protocol and teaching video to answer key scientific questions in the field of cardiac regeneration.


Subject(s)
Disease Models, Animal , Heart/physiology , Myocardial Infarction/pathology , Regeneration/physiology , Animals , Animals, Newborn , In Situ Nick-End Labeling , Mice , Mice, Inbred C57BL , Mice, Inbred ICR
17.
Circ Res ; 118(2): 216-21, 2016 Jan 22.
Article in English | MEDLINE | ID: mdl-26659640

ABSTRACT

RATIONALE: Cardiac remodeling and subsequent heart failure remain critical issues after myocardial infarction despite improved treatment and reperfusion strategies. Recently, cardiac regeneration has been demonstrated in fish and newborn mice after apex resection or cardiac infarctions. Two key issues remain to translate findings in model organisms to future therapies in humans: what is the mechanism and can cardiac regeneration indeed occur in newborn humans? OBJECTIVE: To assess whether human neonatal hearts can functionally recover after myocardial infarction. METHODS AND RESULTS: Here, we report the case of a newborn child having a severe myocardial infarction due to coronary artery occlusion. The child developed massive cardiac damage as defined by serum markers for cardiomyocyte cell death, electrocardiograms, echocardiography, and cardiac angiography. Remarkably, within weeks after the initial ischemic insult, we observed functional cardiac recovery, which translated into long-term normal heart function. CONCLUSIONS: These data indicate that, similar to neonatal rodents, newborn humans might have the intrinsic capacity to repair myocardial damage and completely recover cardiac function.


Subject(s)
Coronary Occlusion/physiopathology , Infant, Newborn, Diseases/physiopathology , Myocardial Infarction/physiopathology , Regeneration , Biomarkers/blood , Cell Death , Coronary Angiography , Coronary Occlusion/blood , Coronary Occlusion/diagnosis , Coronary Occlusion/therapy , Echocardiography, Doppler, Color , Electrocardiography , Humans , Infant, Newborn , Infant, Newborn, Diseases/blood , Infant, Newborn, Diseases/diagnosis , Infant, Newborn, Diseases/therapy , Male , Myocardial Infarction/blood , Myocardial Infarction/diagnosis , Myocardial Infarction/therapy , Myocardium/metabolism , Myocardium/pathology , Recovery of Function , Severity of Illness Index , Time Factors
18.
Cardiovasc Res ; 106(3): 398-407, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25852081

ABSTRACT

AIMS: Increased myocardial wall strain triggers the cardiac hypertrophic response by increasing cardiomyocyte size, reprogramming gene expression, and enhancing contractile protein synthesis. The LIM protein, migfilin, is a cytoskeleton-associated protein that was found to translocate in vitro into the nucleus in a Ca(2+)-dependent manner, where it co-activates the pivotal cardiac transcription factor Csx/Nkx2.5. However, the in vivo role of migfilin in cardiac function and stress response is unclear. METHODS AND RESULTS: To define the role of migfilin in cardiac hypertrophy, we induced hypertension by transverse aortic constriction (TAC) and compared cardiac morphology and function of migfilin knockout (KO) with wild-type (WT) hearts. Heart size and myocardial contractility were comparable in untreated migfilin KO and WT hearts, but migfilin-null hearts presented a reduced extent of hypertrophic remodelling in response to chronic hypertensile stress. Migfilin KO mice maintained their cardiac function for a longer time period compared with WT mice, which presented extensive fibrosis and death due to heart failure. Migfilin translocated into the nucleus of TAC-treated cardiomyocytes, and migfilin KO hearts showed reduced Akt activation during the early response to pressure overload. CONCLUSIONS: Our findings indicate an important role of migfilin in the regulation of cardiac hypertrophy upon experimental TAC.


Subject(s)
Cell Adhesion Molecules/metabolism , Hypertension/complications , Hypertrophy, Left Ventricular/metabolism , Myocytes, Cardiac/metabolism , Ventricular Remodeling , Active Transport, Cell Nucleus , Animals , Cell Adhesion Molecules/deficiency , Cell Adhesion Molecules/genetics , Disease Models, Animal , Enzyme Activation , Extracellular Signal-Regulated MAP Kinases/metabolism , Fibrosis , Heart Failure/genetics , Heart Failure/metabolism , Heart Failure/physiopathology , Hypertension/physiopathology , Hypertrophy, Left Ventricular/genetics , Hypertrophy, Left Ventricular/pathology , Hypertrophy, Left Ventricular/physiopathology , Hypertrophy, Left Ventricular/prevention & control , Male , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Cardiac/pathology , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Time Factors
19.
Colloids Surf B Biointerfaces ; 101: 118-25, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-22796781

ABSTRACT

Scanning electron microscopy, transmission electron microscopy, rheometry, and electrochemistry were used to provide insight into the microstructure of collagen type I gel (1%, w/v) modified with the tiopronin-protected (N-(2-mercaptopropionyl)glycine) gold nanoparticles (TPAu), a multivalent crosslinker. The cross-linking reaction, performed via EDC (1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide) coupling, results in compliant, mechanically stable and continuous gels. The gels contain unusual interconnected collagen-TPAu particles. Electrochemical measurements of 4-hydroxy-(2,2,6,6-tetramethylpiperidine-1-oxyl) (4HT) diffusion within the gel reveal that the gel hindrance is nearly independent of the TPAu concentration. The properties of the collagen-TPAu gel make it suitable for potential biomedical applications, such as delivery of small molecule drugs.


Subject(s)
Collagen Type I/chemistry , Gold/chemistry , Algorithms , Biocompatible Materials , Cross-Linking Reagents , Diffusion , Elasticity , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Nanoparticles , Temperature , Tiopronin/chemistry , Viscosity
20.
J Clin Oncol ; 28(7): 1099-105, 2010 Mar 01.
Article in English | MEDLINE | ID: mdl-20100959

ABSTRACT

PURPOSE: Therapeutic prostate-specific antigen (PSA) -targeted poxviral vaccines for prostate cancer have been well tolerated. PROSTVAC-VF treatment was evaluated for safety and for prolongation of progression-free survival (PFS) and overall survival (OS) in a randomized, controlled, and blinded phase II study. PATIENTS AND METHODS: In total, 125 patients were randomly assigned in a multicenter trial of vaccination series. Eligible patients had minimally symptomatic castration-resistant metastatic prostate cancer (mCRPC). PROSTVAC-VF comprises two recombinant viral vectors, each encoding transgenes for PSA, and three immune costimulatory molecules (B7.1, ICAM-1, and LFA-3). Vaccinia-based vector was used for priming followed by six planned fowlpox-based vector boosts. Patients were allocated (2:1) to PROSTVAC-VF plus granulocyte-macrophage colony-stimulating factor or to control empty vectors plus saline injections. RESULTS: Eighty-two patients received PROSTVAC-VF and 40 received control vectors. Patient characteristics were similar in both groups. The primary end point was PFS, which was similar in the two groups (P = .6). However, at 3 years post study, PROSTVAC-VF patients had a better OS with 25 (30%) of 82 alive versus 7 (17%) of 40 controls, longer median survival by 8.5 months (25.1 v 16.6 months for controls), an estimated hazard ratio of 0.56 (95% CI, 0.37 to 0.85), and stratified log-rank P = .0061. CONCLUSION: PROSTVAC-VF immunotherapy was well tolerated and associated with a 44% reduction in the death rate and an 8.5-month improvement in median OS in men with mCRPC. These provocative data provide preliminary evidence of clinically meaningful benefit but need to be confirmed in a larger phase III study.


Subject(s)
Cancer Vaccines/immunology , Poxviridae/immunology , Prostate-Specific Antigen/immunology , Prostatic Neoplasms/therapy , Aged , Aged, 80 and over , Double-Blind Method , Genetic Vectors/immunology , Humans , Immunization , Male , Middle Aged , Neoplasm Metastasis , Orchiectomy , Prostate-Specific Antigen/antagonists & inhibitors , Prostatic Neoplasms/mortality , Prostatic Neoplasms/pathology , Vaccines, Synthetic/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...