Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
Curr Res Toxicol ; 2: 399-410, 2021.
Article in English | MEDLINE | ID: mdl-34901887

ABSTRACT

Bisphenol A (BPA) is a widely known, yet controversial reproductive toxin, capable of inducing reproductive, developmental, and somatic growth defects across species. Due to scientific findings and public concern, companies have developed BPA alternatives remarkably similar to BPA. However, these alternatives have had much less testing and oversight, yet they are already being mass-produced and used across industries from plastics to food-contact coatings. The newest one, tetramethyl bisphenol F (TMBPF), is the least well-studied and has never been investigated in embryological models, however it continues to be mass produced and found in various products. Here, we used the chicken embryotoxicity screening test to compare the toxicities and potencies of several BPA analogs including TMBPF. We exposed developing chicken (Gallus gallus domesticus) embryos in ovo, from embryonic day 5 to 12 (E5-12), to increasing concentrations of BPA, bisphenol S (BPS), bisphenol AF (BPAF), and TMBPF, from 0.003 to 30 µM, and analyzed their developmental and toxic effects. The bisphenols significantly impaired development, growth, and survival in a dose-dependent manner, even at low, environmentally relevant concentrations of 3-30 nM. There was severely reduced growth and developmental delay, with exposed embryos averaging half the size and weight of control vehicle-treated embryos. The most common and severe dysmorphologies were craniofacial, eye, gastrointestinal, and body pigmentation abnormalities. The bisphenols caused dose-dependent toxicity with the lowest LC50s (lethal concentration with 50% survival) ever demonstrated in chick embryos, at 0.83-2.92 µM. Notably, TMBPF was the second-most toxic and teratogenic of all chemicals tested (rank order of BPAF > TMBPF > BPS > BPA). These results underscore the adverse effects of BPA replacements on early embryo development and may have implications for reproductive health and disease across species, including pregnancy exposures in humans.

2.
Data Brief ; 37: 107183, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34141841

ABSTRACT

Here, we used female adult rat adipose-derived stem cells (rASCs) and human adipose-derived stem cells (hASCs) to compare the toxicities and potencies of several widespread environmental toxins that may be endocrine-disrupting chemicals, including bisphenol A (BPA), and the newer BPA alternatives bisphenol S (BPS), bisphenol AF (BPAF), and tetramethyl bisphenol F (TMBPF). Adult stem cells were cultured to 80% confluency in vitro and then exposed to BPA (1 and 10 µM), 17ß-estradiol (E2; 10 µM), BPS (1 and 10 µM), BPAF (3 × 10-3-30 µM), TMBPF (0.01-50 µM), or control media alone (with 0.01% ethanol) for varying time intervals from 20 min to 5 hrs. Using several cellular assays, the levels of cell death, apoptosis, caspase-6 activation, and potencies were compared across chemical treatments and vehicle-treated controls. There was significantly decreased cell viability and increased apoptosis in rat and human stem cells treated with each BPA analog, as early as 20 min of exposure, and at low doses. With higher magnification, higher resolution imaging it was evident that in many of the BPA analog-treated cells, the Apopxin Deep Red dye indicative of apoptosis was localized to the cytoplasmic compartments of cells, while the nuclear green DCS1 dye indicative of late-stage apoptosis and necrosis was localized to the nuclei of cells. Notably, BPAF and TMBPF showed cytotoxicity in a dose-dependent manner (BPAF LC50 = 0.014 µM (rASCs) and 0.009 µM (hASCs); TMBPF LC50 = 0.88 µM (rASCs) and 0.06 µM (hASCs); lethal concentration with 50% survival). The rank order of potency was BPAF>TMBPF>BPA>BPS. The majority of cell death was due to apoptosis as indicated by high levels of activated caspase-6 in the cytoplasm of almost 100% of cells treated with the BPA analogs. This data allows for further confirmation of caspase-6-mediated apoptosis using higher magnification imaging that definitively demonstrate the cytotoxic and apoptotic effects of these BPA analogs. For a complete description, interpretation, and discussion of the data refer to the article in press [1].

3.
Int J Mol Sci ; 22(10)2021 May 19.
Article in English | MEDLINE | ID: mdl-34069744

ABSTRACT

Bisphenol A (BPA) is an endocrine-disrupting chemical used in the production of plastics, and is linked to developmental, reproductive, and metabolic disorders including obesity. Manufacturers have begun using 'BPA-free' alternatives instead of BPA in many consumer products. However, these alternatives have had much less testing and oversight, yet they are already being mass-produced and used across industries from plastics to food-contact coatings. Here, we used human female adipose-derived stem cells (hASCs), a type of adult mesenchymal stem cell, to compare the effects of BPA and BPA alternatives on adipogenesis or fat cell development in vitro. We focused on two commonly used BPA replacements, bisphenol AF (BPAF) and tetramethyl bisphenol F (TMBPF; monomer of the new valPure V70 food-contact coating). Human ASCs were differentiated into adipocytes using chemically defined media in the presence of control differentiation media with and without 17ß-estradiol (E2; 10 µM), or with increasing doses of BPA (0, 0.1 and 1 µM), BPAF (0, 0.1, 1 and 10 nM), or TMBPF (0, 0.01 and 0.1 µM). After differentiation, the cells were stained and imaged to visualize and quantify the accumulation of lipid vacuoles and number of developing fat cells. Treated cells were also examined for cell viability and apoptosis (programmed cell death) using the respective cellular assays. Similar to E2, BPA at 0.1 µM and BPAF at 0.1 nM, significantly increased adipogenesis and lipid production by 20% compared to control differentiated cells (based on total lipid vacuole number to cell number ratios), whereas higher levels of BPA and BPAF significantly decreased adipogenesis (p < 0.005). All tested doses of TMBPF significantly reduced adipogenesis and lipid production by 30-40%, likely at least partially through toxic effects on stem cells, as viable cell numbers decreased and apoptosis levels increased throughout differentiation. These findings indicate that low, environmentally-relevant doses of BPA, BPAF, and TMBPF have significant effects on fat cell development and lipid accumulation, with TMBPF having non-estrogenic, anti-adipogenic effects. These and other recent results may provide a potential cellular mechanism between exposure to bisphenols and human obesity, and underscore the likely impact of these chemicals on fat development in vivo.


Subject(s)
Adipocytes/metabolism , Adipogenesis/drug effects , Mesenchymal Stem Cells/drug effects , Adipocytes/drug effects , Adipogenesis/physiology , Adipose Tissue/drug effects , Adult Stem Cells/drug effects , Apoptosis/drug effects , Benzhydryl Compounds/adverse effects , Cell Differentiation/drug effects , Cell Survival/drug effects , Endocrine Disruptors/toxicity , Estradiol/pharmacology , Female , Humans , Obesity/metabolism , Phenols/adverse effects , Stem Cells/drug effects
4.
Ecotoxicol Environ Saf ; 216: 112210, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-33866271

ABSTRACT

Bisphenol A (BPA) is a ubiquitous industrial chemical found in everyday plastic products and materials. Due to scientific findings on the reproductive, developmental, and cellular defects caused by BPA and heightened public awareness, manufacturers have begun to use new chemicals in place of BPA in "BPA-free" products. These alternatives are chemical analogs of BPA and include dozens of new compounds that have undergone relatively little testing and oversight, including: bisphenol S (BPS), bisphenol AF (BPAF), and the recently developed tetramethyl bisphenol F (TMBPF; the monomer of valPure V70). Here, we used adult female rat adipose-derived stem cells (rASCs) and human mesenchymal stem cells (hMSCs) to compare the toxicities and potencies of these BPA alternatives in vitro. Rat and human stem cells were exposed to BPA (1-10 µM), 17ß-estradiol (E2; 10 µM), BPS (1-100 µM), BPAF (3×10-4-30 µM), TMBPF (0.01-50 µM), or control media alone (with 0.01% ethanol) for varying time intervals from 10 min to 24 h. We found significantly decreased cell viability and massive apoptosis in rat and human stem cells treated with each BPA analog, as early as 10 min of exposure, and at low, physiologically relevant doses. BPAF showed extreme cytotoxicity in a dose-dependent manner (LC50 =0.014 µM (rASCs) and 0.009 µM (hMSCs)), whereas TMBPF showed a bimodal response, with low and high concentrations being the most toxic (LC50 =0.88 µM (rASCs) and 0.06 µM (hMSCs)). Activated caspase-6 levels increased in nearly all cells treated with the BPA analogs indicating the majority of cell death was due to caspase-6-mediated apoptosis. These results in both rat and human stem cells underscore the toxicity and potency of these BPA analogs, and establish a rank order of potency of: BPAF>TMBPF>BPA>BPS. Further, these and other recent findings indicate that these newer BPA analogs may be 'regrettable substitutions,' being worse than the original parent compound and lacking proper testing and regulation. This work brings to light the need for further toxicological characterization, better regulation, greater public awareness, and the development of safer, more sustainable chemicals and non-plastic products.


Subject(s)
Environmental Pollutants/toxicity , Phenols/toxicity , Toxicity Tests , Animals , Apoptosis/physiology , Benzhydryl Compounds/toxicity , Cell Survival , Estradiol/toxicity , Female , Humans , Rats , Stem Cells , Sulfones/toxicity
5.
Data Brief ; 25: 104091, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31249853

ABSTRACT

Embryos of Xenopus laevis (African clawed frog) were exposed to the widespread environmental plasticizers bisphenol AF (BPAF; 0.003-3 µM), bisphenol A (BPA; 1-50 µM), or 17ß-estradiol (E2; 10 µM) from just after fertilization through 96 hours of development. The potencies and cellular and morphological effects were compared across chemical treatments and controls. The embryos were staged, counted and imaged, and time-lapse movies collected, on an inverted stereomicroscope and camera. The data show there were both shared and unique effects of BPAF, BPA, and E2, on early cleavage divisions and development of the spinal cord, head, and gut, with BPAF having the greatest potency and toxicity (1000 times more potent than BPA). Specifically, cleavage divisions, within 1-6 hours of exposure had severe irregularities including asymmetrical division, slowed mitosis and cytokinesis, cellular dissociation, and fewer numbers of cells per embryo. By 48 hours of exposure the embryos had curved body axis defects, neural tube defects including curved, incomplete, or two neural tubes, ventral and gut blisters, and overall extreme abnormalities. By 96 hours of exposure estradiol caused tail flexures/bent spines, severe pigmentation reduction, long loosely coiled gut, and a ventral blister in 100% of embryos. BPA caused truncated body axis defects, tail flexures, and head and eye malformations in over 60% of embryos. BPAF, at the lowest doses tested, caused craniofacial defects, shorter tails, ventral blisters, edema and peritoneal effusion in over 75% of the surviving embryos. For a complete description, interpretation of the data and a discussion refer to the article in press Arancio et al., 2018.

6.
Fertil Steril ; 111(1): 122-131, 2019 01.
Article in English | MEDLINE | ID: mdl-30611402

ABSTRACT

OBJECTIVE: To examine the relationships between age at menarche, antral follicle count (AFC), and body mass index (BMI) in a multi-ethnic population of women. DESIGN: Community-based, cross-sectional study. SETTING: Academic setting. PATIENT(S): A total of 245 African American women and 273 European American women, aged 25-45 years, with regular menstrual cycles and no reproductive disorders. The ethnicity of these women was self-reported and genetically validated. INTERVENTION(S): The AFCs were measured by transvaginal ultrasound during the early follicular phase. Anthropometric measurements were taken, and age at menarche was gathered by questionnaire. MAIN OUTCOME MEASURE(S): Determination of the associations between age of menarche and adult AFC and BMI. RESULT(S): Earlier age of menarche was associated with both higher BMIs and higher AFCs in adulthood, with control for female age. The antral follicle difference between early (<12 years) vs. late (≥15 years) initiation of menarche in both white and black women was +3.81 and +3.34 follicles, respectively, which is equivalent to an approximately 20% difference in AFC. CONCLUSION(S): This study provides the first evidence that timing of menarche may influence AFC. Because of limited studies on African American women, this work provides additional needed data and may enhance our ability to prospectively screen and better treat various diseases associated with the female reproductive lifespan.


Subject(s)
Black or African American/genetics , Body Mass Index , Menarche/physiology , Ovarian Follicle/physiology , White People/genetics , Adolescent , Adult , Age Factors , Child , Cohort Studies , Cross-Sectional Studies , Female , Follicular Fluid/physiology , Humans , Middle Aged
7.
Reprod Toxicol ; 84: 65-74, 2019 03.
Article in English | MEDLINE | ID: mdl-30579998

ABSTRACT

Bisphenol A (BPA), Bisphenol AF (BPAF), and di-n-butyl phthalate (DBP) are widespread compounds used in the production of plastics. We used Xenopus laevis to compare their effects on early embryo cell division and development. Directly after in vitro fertilizations, embryos were exposed to BPA, BPAF, DBP, or 17ß-estradiol (E2) for up to 96 h. BPA (1-50 µM) and BPAF (0.003-25 µM) caused disrupted cleavage divisions, slowed cytokinesis, and cellular dissociation within 1-6 h. Flexures of the spinal cord, shorter body axis/tail, craniofacial malformations, and significant mortality occurred with environmentally relevant doses of BPAF (LC50 = 0.013 µM). DBP (10-200 µM) showed similar effects, but with severe ventral edema. There were both shared and unique effects of all compounds, with BPAF having the greatest potency and toxicity (BPAF > BPA > estradiol > DBP). These findings underscore the pleiotropic effects of widespread toxicants on early development and highlight the need for better toxicological characterization.


Subject(s)
Benzhydryl Compounds/toxicity , Dibutyl Phthalate/toxicity , Embryonic Development/drug effects , Endocrine Disruptors/toxicity , Estradiol/toxicity , Phenols/toxicity , Xenopus laevis/abnormalities , Animals , Embryo, Nonmammalian/drug effects , Female , Male
8.
Biol Reprod ; 77(6): 960-9, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17761644

ABSTRACT

Activation of rapid motility apparently is one of the first steps of sperm capacitation and can be studied in vitro. Previously we found that 2-chloro-2'-deoxyadenosine or the catecholamine isoproterenol activates mouse sperm motility in vitro via a pathway mediated by cAMP that requires extracellular Ca2+, the atypical sperm adenylyl cyclase, and sperm-specific protein kinase A. We now show that several other adenosine analogs and catecholamines accelerate the flagellar beat of mouse and human sperm. Unexpectedly, the potent adenosine receptor agonist CGS21680 does not accelerate the beat, and the adenosine receptor antagonist DPCPX does not diminish the accelerating action of 2-chloro-2'-deoxyadenosine. The pharmacological profile for activation by catecholamines is also unusual. Both agonists and antagonists of beta-adrenergic receptors elevate the beat frequency. Moreover, both l-(-) and d-+ isomers of epinephrine, norepinephrine, and isoproterenol produce similar acceleration of the beat. In contrast, inhibitors of equilibrative nucleoside transporters effectively slow the onset of the accelerating action of adenosine analogs. Replacement of external Na+ with Li+ also diminishes the accumulation of cAMP and slows the resultant accelerating action of 2-chloro-2'-deoxyadenosine, suggesting the involvement of a Na+-dependent concentrative nucleoside transporter. Our results show that adenosine and catecholamine agonists act in a novel signaling pathway that does not involve G protein-coupled cell-surface receptors that link to conventional adenylyl cyclases. Instead, adenosine and analogs may be transported into sperm via equilibrative and concentrative nucleoside transporters to act on unknown intracellular targets.


Subject(s)
Adenosine/agonists , Catecholamines/agonists , Nucleoside Transport Proteins/metabolism , Sperm Motility/drug effects , Sperm Tail/drug effects , Adenosine/analogs & derivatives , Adenosine/metabolism , Adolescent , Adult , Animals , Catecholamines/metabolism , Humans , Male , Mice , Middle Aged
9.
Dev Biol ; 296(2): 353-62, 2006 Aug 15.
Article in English | MEDLINE | ID: mdl-16842770

ABSTRACT

We previously demonstrated that male mice deficient in the soluble adenylyl cyclase (sAC) are sterile and produce spermatozoa with deficits in progressive motility and are unable to fertilize zona-intact eggs. Here, analyses of sAC(-/-) spermatozoa provide additional insights into the functions linked to cAMP signaling. Adenylyl cyclase activity and cAMP content are greatly diminished in crude preparations of sAC(-/-) spermatozoa and are undetectable after sperm purification. HCO(3)(-) is unable to rapidly accelerate the flagellar beat or facilitate evoked Ca(2+) entry into sAC(-/-) spermatozoa. Moreover, the delayed HCO(3)(-)-dependent increases in protein tyrosine phosphorylation and hyperactivated motility, which occur late in capacitation of wild-type spermatozoa, do not develop in sAC(-/-) spermatozoa. However, sAC(-/-) sperm fertilize zona-free oocytes, indicating that gamete fusion does not require sAC. Although ATP levels are significantly reduced in sAC(-/-) sperm, cAMP-AM ester increases flagellar beat frequency, progressive motility, and alters the pattern of tyrosine phosphorylated proteins. These results indicate that sAC and cAMP coordinate cellular energy balance in wild-type sperm and that the ATP generating machinery is not operating normally in sAC(-/-) spermatozoa. These findings demonstrate that sAC plays a critical role in cAMP signaling in spermatozoa and that defective cAMP production prevents engagement of multiple components of capacitation resulting in male infertility.


Subject(s)
Adenylyl Cyclases/physiology , Fertilization/physiology , Spermatozoa/physiology , Adenylyl Cyclases/deficiency , Adenylyl Cyclases/genetics , Animals , Cyclic AMP/metabolism , Female , Fertilization/genetics , Infertility, Male/enzymology , Infertility, Male/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction/genetics , Signal Transduction/physiology , Solubility , Sperm Capacitation/genetics , Spermatozoa/enzymology
10.
Biol Reprod ; 74(3): 492-500, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16291925

ABSTRACT

Capacitation of mammalian sperm, including alterations in flagellar motility, is presumably modulated by chemical signals encountered in the female reproductive tract. This work investigates signaling pathways for adenosine and catecholamine agonists that stimulate sperm kinetic activity. We show that 2-chloro-2'-deoxyadenosine and isoproterenol robustly accelerate flagellar beat frequency with EC50s near 10 and 0.05 microM, respectively. The several-fold acceleration is maximal by 60 sec. Although extracellular Ca2+ is required for agonist action on the flagellar beat, agonist treatment does not elevate sperm cytosolic [Ca2+] but does increase cAMP content. Acceleration does not require the conventional transmembrane adenylyl cyclase ADCY3, since it persists in sperm of ADCY3 knockout mice and in wild-type sperm in the presence of the inhibitors of conventional adenylyl cyclases SQ-22536, MDL-12330A, or 2', 5'-dideoxyadenosine. In contrast, the acceleration by these agents is absent in sperm that lack the predominant atypical adenylyl cyclase, SACY. Responses to these agonists are also absent in sperm from mice lacking the sperm-specific Calpha2 catalytic subunit of protein kinase A (PRKACA). Agonist responses also are strongly suppressed in wild-type sperm by the protein kinase inhibitor H-89. These results show that adenosine and catecholamine analogs activate sperm motility by mechanisms that require extracellular Ca2+, the atypical sperm adenylyl cyclase, cAMP, and protein kinase A.


Subject(s)
Adenosine/agonists , Catecholamines/agonists , Signal Transduction/physiology , Sperm Motility/drug effects , Sperm Motility/physiology , Adenine/analogs & derivatives , Adenine/pharmacology , Adenylyl Cyclases/genetics , Adenylyl Cyclases/metabolism , Animals , Calcium/metabolism , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/antagonists & inhibitors , Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/metabolism , Dideoxyadenosine/analogs & derivatives , Dideoxyadenosine/pharmacology , Enzyme Inhibitors/pharmacology , Imines/pharmacology , Isoquinolines/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Protein Kinase Inhibitors/pharmacology , Sperm Tail/drug effects , Sperm Tail/physiology , Sulfonamides/pharmacology
11.
J Biol Chem ; 280(37): 32238-44, 2005 Sep 16.
Article in English | MEDLINE | ID: mdl-16036917

ABSTRACT

Among several candidate Ca(2+) entry channels in sperm, only CatSper1 and CatSper2 are known to have required roles in male fertility. Past work with CatSper1 null sperm indicates that a critical lesion in hyperactivated motility underlies the infertility phenotype and is associated with an absence of depolarization-evoked Ca(2+)entry. Here we show that failure of hyperactivation of CatSper2 null sperm similarly correlates with an absence of depolarization evoked Ca(2+) entry. Additional shared aspects of the phenotypes of CatSper1 and -2 null sperm include unperturbed regional distributions of conventional voltage-gated Ca(2+) channel proteins and robust acceleration of the flagellar beat by bicarbonate. Further study reveals that treatment of both wild-type and CatSper2 null sperm with procaine increases beat asymmetry, a characteristic of the flagellar waveform of hyperactivation. This partial rescue of the loss-of-hyperactivation phenotype suggests that an absence of CatSper2 precludes hyperactivation by preventing delivery of needed Ca(2+) messenger rather than by preventing flagellar responses to Ca(2+). CatSper2 null sperm also have an increased basal cAMP content and beat frequency. Protein kinase A inhibitor H89 lowers beat frequency to that of wild-type sperm, suggesting that CatSper2 is required for protein kinase A-mediated, tonic control of resting cAMP content. Relative to wild-type testis, CatSper1 and -2 null testes contain normal amounts of CatSper2 and -1 transcripts, respectively. However, CatSper1 null sperm lack CatSper2 protein and CatSper2 null sperm lack CatSper1 protein. Hence, stable expression of CatSper1 protein requires CatSper2 and vice versa. This co-dependent expression dictates identical loss-of-function sperm phenotypes for CatSper1 and -2 null mutants.


Subject(s)
Calcium Channels/genetics , Calcium Channels/physiology , Seminal Plasma Proteins/genetics , Seminal Plasma Proteins/physiology , Animals , Bicarbonates/pharmacology , Calcium/metabolism , Coloring Agents/pharmacology , Cyclic AMP/metabolism , Egtazic Acid/chemistry , Enzyme Inhibitors/pharmacology , Fluorescent Dyes/pharmacology , Immunoblotting , Immunohistochemistry , Isoquinolines/pharmacology , Male , Mice , Mice, Transgenic , Microscopy, Fluorescence , Phenotype , Procaine/pharmacology , Reverse Transcriptase Polymerase Chain Reaction , Seminal Plasma Proteins/chemistry , Sperm Capacitation , Spermatozoa/metabolism , Sulfonamides/pharmacology , Testis/metabolism
12.
Endocrinology ; 144(3): 813-22, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12586757

ABSTRACT

Galanin-like peptide (GALP) shares sequence homology with galanin and binds to galanin receptors in vitro. GALP neurons in the arcuate nucleus coexpress leptin receptors, and GALP mRNA expression is up-regulated by leptin. Based on these observations, we postulated that GALP plays a role in mediating leptin's inhibitory effects on food intake (FI) and body weight (BW), as well as its stimulatory effect on the reproductive axis. To test these hypotheses, we performed several studies in which mice received intracerebroventricular injections of either GALP or vehicle. Acute GALP treatment elicited a dose-dependent suppression of FI and BW. Long-term treatment with GALP caused only transient reductions in FI and BW, demonstrating that the mice became refractory to continued exposure to GALP. GALP inhibited FI as early as 1 h post injection. Central injection of GALP suppressed locomotor activity and elicited the formation of a conditioned taste aversion. In male mice, serum levels of LH and testosterone were increased by GALP administration. Although we cannot rule out possible nonspecific effects of GALP on FI, the present observations are consistent with the argument that GALP is a downstream effector of leptin's actions within the central nervous system.


Subject(s)
Body Weight , Eating/physiology , Nerve Tissue Proteins/physiology , Reproduction/physiology , Animals , Conditioning, Psychological , Dose-Response Relationship, Drug , Follicle Stimulating Hormone/blood , Galanin-Like Peptide , Injections, Intraventricular , Kinetics , Leptin/pharmacology , Luteinizing Hormone/blood , Male , Mice , Mice, Inbred C57BL , Motor Activity/drug effects , Nerve Tissue Proteins/administration & dosage , Nerve Tissue Proteins/pharmacology , Rats , Rats, Sprague-Dawley , Taste , Testosterone/blood
SELECTION OF CITATIONS
SEARCH DETAIL