Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Biol Psychiatry ; 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38679358

ABSTRACT

BACKGROUND: Optical coherence tomography and electroretinography studies have revealed structural and functional retinal alterations in individuals with schizophrenia spectrum disorders (SSDs). However, it remains unclear which specific retinal layers are affected; how the retina, brain, and clinical symptomatology are connected; and how alterations of the visual system are related to genetic disease risk. METHODS: Optical coherence tomography, electroretinography, and brain magnetic resonance imaging were applied to comprehensively investigate the visual system in a cohort of 103 patients with SSDs and 130 healthy control individuals. The sparse partial least squares algorithm was used to identify multivariate associations between clinical disease phenotype and biological alterations of the visual system. The association of the revealed patterns with individual polygenic disease risk for schizophrenia was explored in a post hoc analysis. In addition, covariate-adjusted case-control comparisons were performed for each individual optical coherence tomography and electroretinography parameter. RESULTS: The sparse partial least squares analysis yielded a phenotype-eye-brain signature of SSDs in which greater disease severity, longer duration of illness, and impaired cognition were associated with electrophysiological alterations and microstructural thinning of most retinal layers. Higher individual loading onto this disease-relevant signature of the visual system was significantly associated with elevated polygenic risk for schizophrenia. In case-control comparisons, patients with SSDs had lower macular thickness, thinner retinal nerve fiber and inner plexiform layers, less negative a-wave amplitude, and lower b-wave amplitude. CONCLUSIONS: This study demonstrates multimodal microstructural and electrophysiological retinal alterations in individuals with SSDs that are associated with disease severity and individual polygenic burden.

3.
Sci Rep ; 14(1): 5768, 2024 03 08.
Article in English | MEDLINE | ID: mdl-38459123

ABSTRACT

The SARS-CoV-2 pandemic has highlighted the need to better define in-hospital transmissions, a need that extends to all other common infectious diseases encountered in clinical settings. To evaluate how whole viral genome sequencing can contribute to deciphering nosocomial SARS-CoV-2 transmission 926 SARS-CoV-2 viral genomes from 622 staff members and patients were collected between February 2020 and January 2021 at a university hospital in Munich, Germany, and analysed along with the place of work, duration of hospital stay, and ward transfers. Bioinformatically defined transmission clusters inferred from viral genome sequencing were compared to those inferred from interview-based contact tracing. An additional dataset collected at the same time at another university hospital in the same city was used to account for multiple independent introductions. Clustering analysis of 619 viral genomes generated 19 clusters ranging from 3 to 31 individuals. Sequencing-based transmission clusters showed little overlap with those based on contact tracing data. The viral genomes were significantly more closely related to each other than comparable genomes collected simultaneously at other hospitals in the same city (n = 829), suggesting nosocomial transmission. Longitudinal sampling from individual patients suggested possible cross-infection events during the hospital stay in 19.2% of individuals (14 of 73 individuals). Clustering analysis of SARS-CoV-2 whole genome sequences can reveal cryptic transmission events missed by classical, interview-based contact tracing, helping to decipher in-hospital transmissions. These results, in line with other studies, advocate for viral genome sequencing as a pathogen transmission surveillance tool in hospitals.


Subject(s)
COVID-19 , Cross Infection , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/genetics , Genome, Viral/genetics , Cross Infection/epidemiology , Cross Infection/genetics , Hospitals, University
4.
EMBO J ; 43(8): 1420-1444, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38528182

ABSTRACT

Current approaches to the treatment of schizophrenia have mainly focused on the protein-coding part of the genome; in this context, the roles of microRNAs have received less attention. In the present study, we analyze the microRNAome in the blood and postmortem brains of schizophrenia patients, showing that the expression of miR-99b-5p is downregulated in both the prefrontal cortex and blood of patients. Lowering the amount of miR-99b-5p in mice leads to both schizophrenia-like phenotypes and inflammatory processes that are linked to synaptic pruning in microglia. The microglial miR-99b-5p-supressed inflammatory response requires Z-DNA binding protein 1 (Zbp1), which we identify as a novel miR-99b-5p target. Antisense oligonucleotides against Zbp1 ameliorate the pathological effects of miR-99b-5p inhibition. Our findings indicate that a novel miR-99b-5p-Zbp1 pathway in microglia might contribute to the pathogenesis of schizophrenia.


Subject(s)
MicroRNAs , Schizophrenia , Animals , Humans , Mice , Microglia/metabolism , MicroRNAs/metabolism , RNA-Binding Proteins/metabolism , Schizophrenia/genetics
5.
Int J Mol Sci ; 24(17)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37686257

ABSTRACT

We aimed to analyse whether patients with ischaemic stroke (IS) occurring within eight days after the onset of COVID-19 (IS-COV) are associated with a specific aetiology of IS. We used SUPERGNOVA to identify genome regions that correlate between the IS-COV cohort (73 IS-COV cases vs. 701 population controls) and different aetiological subtypes. Polygenic risk scores (PRSs) for each subtype were generated and tested in the IS-COV cohort using PRSice-2 and PLINK to find genetic associations. Both analyses used the IS-COV cohort and GWAS from MEGASTROKE (67,162 stroke patients vs. 454,450 population controls), GIGASTROKE (110,182 vs. 1,503,898), and the NINDS Stroke Genetics Network (16,851 vs. 32,473). Three genomic regions were associated (p-value < 0.05) with large artery atherosclerosis (LAA) and cardioembolic stroke (CES). We found four loci targeting the genes PITX2 (rs10033464, IS-COV beta = 0.04, p-value = 2.3 × 10-2, se = 0.02), previously associated with CES, HS6ST1 (rs4662630, IS-COV beta = -0.04, p-value = 1.3 × 10-3, se = 0.01), TMEM132E (rs12941838 IS-COV beta = 0.05, p-value = 3.6 × 10-4, se = 0.01), and RFFL (rs797989 IS-COV beta = 0.03, p-value = 1.0 × 10-2, se = 0.01). A statistically significant PRS was observed for LAA. Our results suggest that IS-COV cases are genetically similar to LAA and CES subtypes. Larger cohorts are needed to assess if the genetic factors in IS-COV cases are shared with the general population or specific to viral infection.


Subject(s)
Atherosclerosis , Brain Ischemia , COVID-19 , Embolic Stroke , Ischemic Stroke , Stroke , Humans , Stroke/complications , Stroke/genetics , Brain Ischemia/complications , Brain Ischemia/genetics , COVID-19/complications , COVID-19/genetics , Ischemic Stroke/genetics , Arteries
6.
Microorganisms ; 11(6)2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37375064

ABSTRACT

Immunocompromised individuals are at higher risk of developing protracted and severe COVID-19, and understanding individual disease courses and SARS-CoV-2 immune responses in these individuals is of the utmost importance. For more than two years, we followed an immunocompromised individual with a protracted SARS-CoV-2 infection that was eventually cleared in the absence of a humoral neutralizing SARS-CoV-2 antibody response. By conducting an in-depth examination of this individual's immune response and comparing it to a large cohort of convalescents who spontaneously cleared a SARS-CoV-2 infection, we shed light on the interplay between B- and T-cell immunity and how they interact in clearing SARS-CoV-2 infection.

7.
Transl Psychiatry ; 13(1): 99, 2023 03 25.
Article in English | MEDLINE | ID: mdl-36966169

ABSTRACT

Existing guidelines recommend psychopharmacological treatment for the management of schizophrenia and bipolar disorder as part of holistic treatment concepts. About half of the patients do not take their medication regularly, although treatment adherence can prevent exacerbations and re-hospitalizations. To date, the relationship between medication adherence and cognitive performance is understudied. Therefore, this study investigated the relationship between medication adherence and cognitive performance by analyzing the data of 862 participants with schizophrenia-spectrum and bipolar disorders (mean [SD] age, 41.9 [12.48] years; 44.8% female) from a multicenter study (PsyCourse Study). Z-scores for three cognitive domains were calculated, global functioning was measured with the Global Assessment of Functioning Scale, and adherence was assessed by a self-rating questionnaire. We evaluated four multiple linear regression models and built three clusters with hierarchical cluster analyses. Higher adherence behavior (p < 0.001) was associated with better global functioning but showed no impact on the cognitive domains learning and memory, executive function, and psychomotor speed. The hierarchical cluster analysis resulted in three clusters with different cognitive performances, but patients in all clusters showed similar adherence behavior. The study identified cognitive subgroups independent of diagnoses, but no differences were found in the adherence behavior of the patients in these new clusters. In summary, medication adherence was associated with global but not cognitive functioning in patients with schizophrenia-spectrum and bipolar disorders. In both diagnostic groups, cognitive function might be influenced by various factors but not medication adherence.


Subject(s)
Bipolar Disorder , Schizophrenia , Humans , Female , Adult , Male , Schizophrenia/drug therapy , Schizophrenia/diagnosis , Bipolar Disorder/diagnosis , Executive Function , Cognition , Multivariate Analysis , Neuropsychological Tests
8.
Schizophr Res Cogn ; 32: 100280, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36846489

ABSTRACT

As core symptoms of schizophrenia, cognitive deficits contribute substantially to poor outcomes. Early life stress (ELS) can negatively affect cognition in patients with schizophrenia and healthy controls, but the exact nature of the mediating factors is unclear. Therefore, we investigated how ELS, education, and symptom burden are related to cognitive performance. The sample comprised 215 patients with schizophrenia (age, 42.9 ± 12.0 years; 66.0 % male) and 197 healthy controls (age, 38.5 ± 16.4 years; 39.3 % male) from the PsyCourse Study. ELS was assessed with the Childhood Trauma Screener (CTS). We used analyses of covariance and correlation analyses to investigate the association of total ELS load and ELS subtypes with cognitive performance. ELS was reported by 52.1 % of patients and 24.9 % of controls. Independent of ELS, cognitive performance on neuropsychological tests was lower in patients than controls (p < 0.001). ELS load was more closely associated with neurocognitive deficits (cognitive composite score) in controls (r = -0.305, p < 0.001) than in patients (r = -0.163, p = 0.033). Moreover, the higher the ELS load, the more cognitive deficits were found in controls (r = -0.200, p = 0.006), while in patients, this correlation was not significant after adjusting for PANSS. ELS load was more strongly associated with cognitive deficits in healthy controls than in patients. In patients, disease-related positive and negative symptoms may mask the effects of ELS-related cognitive deficits. ELS subtypes were associated with impairments in various cognitive domains. Cognitive deficits appear to be mediated through higher symptom burden and lower educational level.

9.
Schizophr Res ; 252: 161-171, 2023 02.
Article in English | MEDLINE | ID: mdl-36652833

ABSTRACT

Major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia spectrum disorders (SZ) exhibit considerable phenotypic and genetic overlap. However, the contribution of genetic factors to their shared psychopathological symptom dimensions remains unclear. The present exploratory study investigated genetic contributions to the symptom dimensions "Depression", "Negative syndrome", "Positive formal thought disorder", "Paranoid-hallucinatory syndrome", and "Increased appetite" in a transdiagnostic subset of the German FOR2107 cohort (n = 1042 patients with MDD, BD, or SZ). As replication cohort, a subset of the German/Austrian PsyCourse study (n = 816 patients with MDD, BD, or SZ) was employed. First, the relationship between symptom dimensions and common variants associated with MDD, BD, and SZ was investigated via polygenic risk score (PRS) association analyses, with disorder-specific PRS as predictors and symptom dimensions as outcomes. In the FOR2107 study sample, PRS for BD and SZ were positively associated with "Positive formal thought disorder", the PRS for SZ was positively associated with "Paranoid-hallucinatory syndrome", and the PRS for BD was negatively associated with "Depression". The effects of PRS for SZ were replicated in PsyCourse. No significant associations were observed for the MDD PRS. Second, genome-wide association studies (GWAS) were performed for the five symptom dimensions. No genome-wide significant associations and no replicable suggestive associations (p < 1e-6 in the GWAS) were identified. In summary, our results suggest that, similar to diagnostic categories, transdiagnostic psychiatric symptom dimensions are attributable to polygenic contributions with small effect sizes. Further studies in larger thoroughly phenotyped psychiatric cohorts are required to elucidate the genetic factors that shape psychopathological symptom dimensions.


Subject(s)
Bipolar Disorder , Depressive Disorder, Major , Schizophrenia , Humans , Depressive Disorder, Major/genetics , Bipolar Disorder/psychology , Schizophrenia/diagnosis , Genome-Wide Association Study , Risk Assessment , Hallucinations , Multifactorial Inheritance , Genetic Predisposition to Disease
10.
J Affect Disord ; 325: 1-6, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36621676

ABSTRACT

BACKGROUND: Mitochondria generate energy through oxidative phosphorylation (OXPHOS). The function of key OXPHOS proteins can be altered by variation in mitochondria-related genes, which may increase the risk of mental illness. We investigated the association of mitochondria-related genes and their genetic risk burden with cognitive performance. METHODS: We leveraged cross-sectional data from 1320 individuals with a severe psychiatric disorder and 466 neurotypical individuals from the PsyCourse Study. The cognitive tests analyzed were the Trail-Making Test, Verbal Digit Span Test, Digit-Symbol Test, and Multiple Choice Vocabulary Intelligence Test. Association analyses between the cognitive tests, and single-nucleotide polymorphisms (SNPs) mapped to mitochondria-related genes, and their polygenic risk score (PRS) for schizophrenia (SCZ) were performed with PLINK 1.9 and R program. RESULTS: We found a significant association (FDR-adjusted p < 0.05) in the Cytochrome C Oxidase Assembly Factor 8 (COA8) gene locus of the OXPHOS pathway with the Verbal Digit Span (forward) test. Mitochondrial PRS was not significantly associated with any of the cognitive tests. LIMITATIONS: Moderate statistical power due to relatively small sample size. CONCLUSIONS: COA8 encodes a poorly characterized mitochondrial protein involved in apoptosis. Here, this gene was associated with the Verbal Digit Span (forward) test, which evaluates short-term memory. Our results warrant replication and may lead to better understanding of cognitive impairment in mental disorders.


Subject(s)
Cognitive Dysfunction , Schizophrenia , Humans , Cross-Sectional Studies , Schizophrenia/complications , Cognitive Dysfunction/genetics , Cognitive Dysfunction/complications , Neuropsychological Tests , Cognition , Mitochondria/genetics
11.
JAMA Psychiatry ; 80(3): 250-259, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36696101

ABSTRACT

Importance: No clinically applicable diagnostic test exists for severe mental disorders. Lipids harbor potential as disease markers. Objective: To define a reproducible profile of lipid alterations in the blood plasma of patients with schizophrenia (SCZ) independent of demographic and environmental variables and to investigate its specificity in association with other psychiatric disorders, ie, major depressive disorder (MDD) and bipolar disorder (BPD). Design, Setting, and Participants: This was a multicohort case-control diagnostic analysis involving plasma samples from psychiatric patients and control individuals collected between July 17, 2009, and May 18, 2018. Study participants were recruited as consecutive and volunteer samples at multiple inpatient and outpatient mental health hospitals in Western Europe (Germany and Austria [DE-AT]), China (CN), and Russia (RU). Individuals with DSM-IV or International Statistical Classification of Diseases and Related Health Problems, Tenth Revision diagnoses of SCZ, MDD, BPD, or a first psychotic episode, as well as age- and sex-matched healthy controls without a mental health-related diagnosis were included in the study. Samples and data were analyzed from January 2018 to September 2020. Main Outcomes and Measures: Plasma lipidome composition was assessed using liquid chromatography coupled with untargeted mass spectrometry. Results: Blood lipid levels were assessed in 980 individuals (mean [SD] age, 36 [13] years; 510 male individuals [52%]) diagnosed with SCZ, BPD, MDD, or those with a first psychotic episode and in 572 controls (mean [SD] age, 34 [13] years; 323 male individuals [56%]). A total of 77 lipids were found to be significantly altered between those with SCZ (n = 436) and controls (n = 478) in all 3 sample cohorts. Alterations were consistent between cohorts (CN and RU: [Pearson correlation] r = 0.75; DE-AT and CN: r = 0.78; DE-AT and RU: r = 0.82; P < 10-38). A lipid-based predictive model separated patients with SCZ from controls with high diagnostic ability (area under the receiver operating characteristic curve = 0.86-0.95). Lipidome alterations in BPD and MDD, assessed in 184 and 256 individuals, respectively, were found to be similar to those of SCZ (BPD: r = 0.89; MDD: r = 0.92; P < 10-79). Assessment of detected alterations in individuals with a first psychotic episode, as well as patients with SCZ not receiving medication, demonstrated only limited association with medication restricted to particular lipids. Conclusions and Relevance: In this study, SCZ was accompanied by a reproducible profile of plasma lipidome alterations, not associated with symptom severity, medication, and demographic and environmental variables, and largely shared with BPD and MDD. This lipid alteration signature may represent a trait marker of severe psychiatric disorders, indicating its potential to be transformed into a clinically applicable testing procedure.


Subject(s)
Bipolar Disorder , Depressive Disorder, Major , Psychotic Disorders , Schizophrenia , Humans , Male , Adult , Bipolar Disorder/diagnosis , Schizophrenia/diagnosis , Depressive Disorder, Major/psychology , Depression , Psychotic Disorders/diagnosis
12.
Transl Psychiatry ; 12(1): 471, 2022 11 09.
Article in English | MEDLINE | ID: mdl-36351892

ABSTRACT

The diagnostic criteria for schizophrenia (SCZ) and bipolar disorder (BD) are based on clinical assessments of symptoms. In this pilot study, we applied high-throughput antibody-based protein profiling to serum samples of healthy controls and individuals with SCZ and BD with the aim of identifying differentially expressed proteins in these disorders. Moreover, we explored the influence of polygenic burden for SCZ and BD on the serum levels of these proteins. Serum samples from 113 individuals with SCZ and 125 with BD from the PsyCourse Study and from 44 healthy controls were analyzed by using a set of 155 antibodies in an antibody-based assay targeting a selected panel of 95 proteins. For the cases, genotyping and imputation were conducted for DNA samples and SCZ and BD polygenic risk scores (PRS) were calculated. Univariate linear and logistic models were used for association analyses. The comparison between SCZ and BD revealed two serum proteins that were significantly elevated in BD after multiple testing adjustment: "complement C9" and "Interleukin 1 Receptor Accessory Protein". Moreover, the first principal component of variance in the proteomics dataset differed significantly between SCZ and BD. After multiple testing correction, SCZ-PRS, BD-PRS, and SCZ-vs-BD-PRS were not significantly associated with the levels of the individual proteins or the values of the proteome principal components indicating no detectable genetic effects. Overall, our findings contribute to the evidence suggesting that the analysis of circulating proteins could lead to the identification of distinctive biomarkers for SCZ and BD. Our investigation warrants replication in large-scale studies to confirm these findings.


Subject(s)
Bipolar Disorder , Schizophrenia , Humans , Bipolar Disorder/genetics , Bipolar Disorder/metabolism , Schizophrenia/metabolism , Proteomics , Pilot Projects , Risk Factors , Genetic Predisposition to Disease
13.
Schizophr Res ; 244: 29-38, 2022 06.
Article in English | MEDLINE | ID: mdl-35567871

ABSTRACT

Biological research and clinical management in psychiatry face two major impediments: the high degree of overlap in psychopathology between diagnoses and the inherent heterogeneity with regard to severity. Here, we aim to stratify cases into homogeneous transdiagnostic subgroups using psychometric information with the ultimate aim of identifying individuals with higher risk for severe illness. 397 participants of the PsyCourse study with schizophrenia- or bipolar-spectrum diagnoses were prospectively phenotyped over 18 months. Factor analysis of mixed data of different rating scales and subsequent longitudinal clustering were used to cluster disease trajectories. Five clusters of longitudinal trajectories were identified in the psychopathologic dimensions. Clusters differed significantly with regard to Global Assessment of Functioning, disease course, and-in some cases-diagnosis while there were no significant differences regarding sex, age at baseline or onset, duration of illness, or polygenic burden for schizophrenia. Longitudinal clustering may aid in identifying transdiagnostic homogeneous subgroups of individuals with severe psychiatric disease.


Subject(s)
Bipolar Disorder , Mental Disorders , Bipolar Disorder/diagnosis , Bipolar Disorder/epidemiology , Bipolar Disorder/psychology , Cluster Analysis , Hospitals , Humans , Mental Disorders/diagnosis , Mental Disorders/epidemiology , Psychopathology
14.
BJPsych Open ; 8(2): e55, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35232513

ABSTRACT

BACKGROUND: Case-only longitudinal studies are common in psychiatry. Further, it is assumed that psychiatric ratings and questionnaire results of healthy controls stay stable over foreseeable time ranges. For cognitive tests, improvements over time are expected, but data for more than two administrations are scarce. AIMS: We comprehensively investigated the longitudinal course for trends over time in cognitive and symptom measurements for severe mental disorders. Assessments included the Trail Making Tests, verbal Digit Span tests, Global Assessment of Functioning, Inventory of Depressive Symptomatology, the Positive and Negative Syndrome Scale, and the Young Mania Rating Scale, among others. METHOD: Using the data of control individuals (n = 326) from the PsyCourse study who had up to four assessments over 18 months, we modelled the course using linear mixed models or logistic regression. The slopes or odds ratios were estimated and adjusted for age and gender. We also assessed the robustness of these results using a longitudinal non-parametric test in a sensitivity analysis. RESULTS: Small effects were detected for most cognitive tests, indicating a performance improvement over time (P < 0.05). However, for most of the symptom rating scales and questionnaires, no effects were detected, in line with our initial hypothesis. CONCLUSIONS: The slightly but consistently improved performance in the cognitive tests speaks of a test-unspecific positive trend, while psychiatric ratings and questionnaire results remain stable over the observed period. These detectable improvements need to be considered when interpreting longitudinal courses. We therefore recommend recruiting control participants if cognitive tests are administered.

16.
Eur Arch Psychiatry Clin Neurosci ; 272(8): 1611-1620, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35146571

ABSTRACT

Personality traits influence risk for suicidal behavior. We examined phenotype- and genotype-level associations between the Big Five personality traits and suicidal ideation and attempt in major depressive, bipolar and schizoaffective disorder, and schizophrenia patients (N = 3012) using fixed- and random-effects inverse variance-weighted meta-analyses. Suicidal ideations were more likely to be reported by patients with higher neuroticism and lower extraversion phenotypic scores, but showed no significant association with polygenic load for these personality traits. Our findings provide new insights into the association between personality and suicidal behavior across mental illnesses and suggest that the genetic component of personality traits is unlikely to have strong causal effects on suicidal behavior.


Subject(s)
Depressive Disorder, Major , Suicidal Ideation , Humans , Depressive Disorder, Major/psychology , Mental Health , Personality/genetics , Phenotype
17.
Hum Genet ; 141(1): 147-173, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34889978

ABSTRACT

The combined impact of common and rare exonic variants in COVID-19 host genetics is currently insufficiently understood. Here, common and rare variants from whole-exome sequencing data of about 4000 SARS-CoV-2-positive individuals were used to define an interpretable machine-learning model for predicting COVID-19 severity. First, variants were converted into separate sets of Boolean features, depending on the absence or the presence of variants in each gene. An ensemble of LASSO logistic regression models was used to identify the most informative Boolean features with respect to the genetic bases of severity. The Boolean features selected by these logistic models were combined into an Integrated PolyGenic Score that offers a synthetic and interpretable index for describing the contribution of host genetics in COVID-19 severity, as demonstrated through testing in several independent cohorts. Selected features belong to ultra-rare, rare, low-frequency, and common variants, including those in linkage disequilibrium with known GWAS loci. Noteworthily, around one quarter of the selected genes are sex-specific. Pathway analysis of the selected genes associated with COVID-19 severity reflected the multi-organ nature of the disease. The proposed model might provide useful information for developing diagnostics and therapeutics, while also being able to guide bedside disease management.


Subject(s)
COVID-19/genetics , COVID-19/physiopathology , Exome Sequencing , Genetic Predisposition to Disease , Phenotype , Severity of Illness Index , Adult , Aged , Aged, 80 and over , Cohort Studies , Female , Germany , Humans , Italy , Male , Middle Aged , Polymorphism, Single Nucleotide , Quebec , SARS-CoV-2 , Sweden , United Kingdom
18.
J Affect Disord ; 296: 532-540, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34656040

ABSTRACT

OBJECTIVES: Bipolar disorder (BD) has a highly heterogeneous clinical course that is characterized by relapses and increased health care utilization in a significant fraction of patients. A thorough understanding of factors influencing illness course is essential for predicting disorder severity and developing targeted therapies. METHODS: We performed polygenic score analyses in four cohorts (N = 954) to test whether the genetic risk for BD, schizophrenia, or major depression is associated with a severe course of BD. We analyzed BD patients with a minimum illness duration of five years. The severity of the disease course was assessed by using the number of hospitalizations in a mental health facility and a composite measure of longitudinal illness severity (OPCRIT item 90). RESULTS: Our analyses showed that higher polygenic scores for BD (ß = 0.11, SE = 0.03, p = 1.17 × 10-3) and schizophrenia (ß = 0.09, SE = 0.03, p = 4.24 × 10-3), but not for major depression, were associated with more hospitalizations. None of the investigated polygenic scores was associated with the composite measure of longitudinal illness severity (OPCRIT item 90). LIMITATIONS: We could not account for non-genetic influences on disease course. Our clinical sample contained more severe cases. CONCLUSIONS: This study demonstrates that the genetic risk burden for psychiatric illness is associated with increased health care utilization, a proxy for disease severity, in BD patients. The findings are in line with previous observations made for patients diagnosed with schizophrenia or major depression. Therefore, in the future psychiatric disorder polygenic scores might become helpful for stratifying patients with high risk of a chronic manifestation and predicting disease course.


Subject(s)
Bipolar Disorder , Depressive Disorder, Major , Schizophrenia , Bipolar Disorder/epidemiology , Bipolar Disorder/genetics , Depressive Disorder, Major/epidemiology , Depressive Disorder, Major/genetics , Hospitalization , Humans , Multifactorial Inheritance/genetics , Schizophrenia/epidemiology , Schizophrenia/genetics
19.
Transl Psychiatry ; 11(1): 600, 2021 11 26.
Article in English | MEDLINE | ID: mdl-34836939

ABSTRACT

As early detection of symptoms in the subclinical to clinical psychosis spectrum may improve health outcomes, knowing the probabilistic susceptibility of developing a disorder could guide mitigation measures and clinical intervention. In this context, polygenic risk scores (PRSs) quantifying the additive effects of multiple common genetic variants hold the potential to predict complex diseases and index severity gradients. PRSs for schizophrenia (SZ) and bipolar disorder (BD) were computed using Bayesian regression and continuous shrinkage priors based on the latest SZ and BD genome-wide association studies (Psychiatric Genomics Consortium, third release). Eight well-phenotyped groups (n = 1580; 56% males) were assessed: control (n = 305), lower (n = 117) and higher (n = 113) schizotypy (both groups of healthy individuals), at-risk for psychosis (n = 120), BD type-I (n = 359), BD type-II (n = 96), schizoaffective disorder (n = 86), and SZ groups (n = 384). PRS differences were investigated for binary traits and the quantitative Positive and Negative Syndrome Scale. Both BD-PRS and SZ-PRS significantly differentiated controls from at-risk and clinical groups (Nagelkerke's pseudo-R2: 1.3-7.7%), except for BD type-II for SZ-PRS. Out of 28 pairwise comparisons for SZ-PRS and BD-PRS, 9 and 12, respectively, reached the Bonferroni-corrected significance. BD-PRS differed between control and at-risk groups, but not between at-risk and BD type-I groups. There was no difference between controls and schizotypy. SZ-PRSs, but not BD-PRSs, were positively associated with transdiagnostic symptomology. Overall, PRSs support the continuum model across the psychosis spectrum at the genomic level with possible irregularities for schizotypy. The at-risk state demands heightened clinical attention and research addressing symptom course specifiers. Continued efforts are needed to refine the diagnostic and prognostic accuracy of PRSs in mental healthcare.


Subject(s)
Genome-Wide Association Study , Psychotic Disorders , Bayes Theorem , Female , Genetic Predisposition to Disease , Humans , Male , Multifactorial Inheritance , Psychotic Disorders/genetics , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...