Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Trends Biochem Sci ; 48(11): 937-948, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37574372

ABSTRACT

Auxins are pivotal plant hormones that regulate plant growth and transmembrane polar auxin transport (PAT) direct patterns of development. The PIN-FORMED (PIN) family of membrane transporters mediate auxin export from the plant cell and play crucial roles in PAT. Here we describe the recently solved structures of PIN transporters, PIN1, PIN3, and PIN8, and also their mechanisms of substrate recognition and transport of auxin. We compare structures of PINs in both inward- and outward-facing conformations, as well as PINs with different binding configurations for auxin. By this comparative analysis, a model emerges for an elevator transport mechanism. Central structural elements necessary for function are identified, and we show that these are shared with other distantly related protein families.

2.
J Exp Bot ; 74(22): 6893-6903, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37279330

ABSTRACT

Auxin is a crucial plant hormone that controls a multitude of developmental processes. The directional movement of auxin between cells is largely facilitated by canonical PIN-FORMED proteins in the plasma membrane. In contrast, non-canonical PIN-FORMED proteins and PIN-LIKES proteins appear to reside mainly in the endoplasmic reticulum. Despite recent progress in identifying the roles of the endoplasmic reticulum in cellular auxin responses, the transport dynamics of auxin at the endoplasmic reticulum are not well understood. PIN-LIKES are structurally related to PIN-FORMED proteins, and recently published structures of these transporters have provided new insights into PIN-FORMED proteins and PIN-LIKES function. In this review, we summarize current knowledge on PIN-FORMED proteins and PIN-LIKES in intracellular auxin transport. We discuss the physiological properties of the endoplasmic reticulum and the consequences for transport processes across the ER membrane. Finally, we highlight the emerging role of the endoplasmic reticulum in the dynamics of cellular auxin signalling and its impact on plant development.


Subject(s)
Arabidopsis Proteins , Plant Growth Regulators , Biological Transport/physiology , Plant Growth Regulators/metabolism , Indoleacetic Acids/metabolism , Membrane Transport Proteins/metabolism , Endoplasmic Reticulum/metabolism , Arabidopsis Proteins/metabolism
3.
Nat Commun ; 14(1): 3379, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37291153

ABSTRACT

In plant communities, diversity often increases productivity and functioning, but the specific underlying drivers are difficult to identify. Most ecological theories attribute positive diversity effects to complementary niches occupied by different species or genotypes. However, the specific nature of niche complementarity often remains unclear, including how it is expressed in terms of trait differences between plants. Here, we use a gene-centred approach to study positive diversity effects in mixtures of natural Arabidopsis thaliana genotypes. Using two orthogonal genetic mapping approaches, we find that between-plant allelic differences at the AtSUC8 locus are strongly associated with mixture overyielding. AtSUC8 encodes a proton-sucrose symporter and is expressed in root tissues. Genetic variation in AtSUC8 affects the biochemical activities of protein variants and natural variation at this locus is associated with different sensitivities of root growth to changes in substrate pH. We thus speculate that - in the particular case studied here - evolutionary divergence along an edaphic gradient resulted in the niche complementarity between genotypes that now drives overyielding in mixtures. Identifying genes important for ecosystem functioning may ultimately allow linking ecological processes to evolutionary drivers, help identify traits underlying positive diversity effects, and facilitate the development of high-performance crop variety mixtures.


Subject(s)
Biodiversity , Ecosystem , Plants , Genotype , Phenotype
4.
Praxis (Bern 1994) ; 111(11): 623-631, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35975415

ABSTRACT

Cardiomyopathies are myocardial disorders with a structurally and functionally abnormal heart muscle. In this review, we describe pathophysiological aspects, clinical presentation, diagnosis, risk stratification and therapeutical concepts of the three most common forms of cardiomyopathy: hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), and arrhythmogenic cardiomyopathy (ACM).


Subject(s)
Cardiomyopathies , Cardiomyopathy, Dilated , Cardiomyopathy, Hypertrophic , Cardiomyopathies/diagnosis , Cardiomyopathies/therapy , Cardiomyopathy, Dilated/diagnosis , Cardiomyopathy, Dilated/etiology , Cardiomyopathy, Dilated/therapy , Cardiomyopathy, Hypertrophic/diagnosis , Cardiomyopathy, Hypertrophic/therapy , Humans , Myocardium
5.
Nature ; 609(7927): 605-610, 2022 09.
Article in English | MEDLINE | ID: mdl-35768502

ABSTRACT

Auxins are hormones that have central roles and control nearly all aspects of growth and development in plants1-3. The proteins in the PIN-FORMED (PIN) family (also known as the auxin efflux carrier family) are key participants in this process and control auxin export from the cytosol to the extracellular space4-9. Owing to a lack of structural and biochemical data, the molecular mechanism of PIN-mediated auxin transport is not understood. Here we present biophysical analysis together with three structures of Arabidopsis thaliana PIN8: two outward-facing conformations with and without auxin, and one inward-facing conformation bound to the herbicide naphthylphthalamic acid. The structure forms a homodimer, with each monomer divided into a transport and scaffold domain with a clearly defined auxin binding site. Next to the binding site, a proline-proline crossover is a pivot point for structural changes associated with transport, which we show to be independent of proton and ion gradients and probably driven by the negative charge of the auxin. The structures and biochemical data reveal an elevator-type transport mechanism reminiscent of bile acid/sodium symporters, bicarbonate/sodium symporters and sodium/proton antiporters. Our results provide a comprehensive molecular model for auxin recognition and transport by PINs, link and expand on a well-known conceptual framework for transport, and explain a central mechanism of polar auxin transport, a core feature of plant physiology, growth and development.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Indoleacetic Acids , Membrane Transport Proteins , Antiporters/metabolism , Arabidopsis/chemistry , Arabidopsis/metabolism , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Bicarbonates/metabolism , Bile Acids and Salts/metabolism , Binding Sites , Biological Transport , Herbicides/metabolism , Indoleacetic Acids/chemistry , Indoleacetic Acids/metabolism , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/metabolism , Phthalimides/metabolism , Plant Growth Regulators/chemistry , Plant Growth Regulators/metabolism , Proline/metabolism , Protein Domains , Protein Multimerization , Protons , Sodium/metabolism , Symporters/metabolism
6.
Proc Natl Acad Sci U S A ; 118(1)2021 01 07.
Article in English | MEDLINE | ID: mdl-33303654

ABSTRACT

As the COVID-19 pandemic is spreading around the world, increasing evidence highlights the role of cardiometabolic risk factors in determining the susceptibility to the disease. The fragmented data collected during the initial emergency limited the possibility of investigating the effect of highly correlated covariates and of modeling the interplay between risk factors and medication. The present study is based on comprehensive monitoring of 576 COVID-19 patients. Different statistical approaches were applied to gain a comprehensive insight in terms of both the identification of risk factors and the analysis of dependency structure among clinical and demographic characteristics. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus enters host cells by binding to the angiotensin-converting enzyme 2 (ACE2), but whether or not renin-angiotensin-aldosterone system inhibitors (RAASi) would be beneficial to COVID-19 cases remains controversial. The survival tree approach was applied to define a multilayer risk stratification and better profile patient survival with respect to drug regimens, showing a significant protective effect of RAASi with a reduced risk of in-hospital death. Bayesian networks were estimated, to uncover complex interrelationships and confounding effects. The results confirmed the role of RAASi in reducing the risk of death in COVID-19 patients. De novo treatment with RAASi in patients hospitalized with COVID-19 should be prospectively investigated in a randomized controlled trial to ascertain the extent of risk reduction for in-hospital death in COVID-19.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , COVID-19 , SARS-CoV-2 , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme Inhibitors , COVID-19/mortality , COVID-19/physiopathology , COVID-19/virology , Female , Hospitalization , Humans , Male , Middle Aged , Pandemics , Protective Agents , Renin-Angiotensin System/drug effects , Renin-Angiotensin System/physiology , Risk Factors , Survival Analysis
7.
Neural Regen Res ; 11(2): 338-44, 2016 Feb.
Article in English | MEDLINE | ID: mdl-27073390

ABSTRACT

The influence of duration of immobilization and postoperative sensory re-education on the final outcome after reconstruction of digital nerves with direct suture or muscle-in-vein conduits was investigated. The final sensory outcome of 35 patients with 41 digital nerve injuries, who either underwent a direct suture (DS) or a nerve reconstruction with muscle-in-vein conduits (MVC), was assessed the earliest 12 months postoperatively using static and moving two-point discrimination as well as Semmes-Weinstein monofilaments. There was no significant difference in sensory recovery in cases with an immobilization of 3-7 days versus 10 days in the DS or MVC group. Moreover, no statistically significant difference in sensory recovery was found in cases receiving postoperative sensory re-education versus those not receiving in the DS or MVC group. An early mobilization does not seem to have a negative impact on the final outcome after digital nerve reconstruction. The effect of sensory re-education after digital nerve reconstruction should be reconsidered.

8.
Neural Regen Res ; 10(10): 1674-7, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26692868

ABSTRACT

Muscle-in-vein conduits are used alternatively to nerve grafts for bridging nerve defects. The purpose of this study was to examine short- and long-term regeneration results after digital nerve reconstruction with muscle-in-vein conduits. Static and moving two-point discriminations and Semmes-Weinstein Monofilaments were used to evaluate sensory recovery 6-12 months and 14-35 months after repair of digital nerves with muscle-in-vein in 7 cases. Both follow-ups were performed after clinical signs of progressing regeneration disappeared. In 4 of 7 cases, a further recovery of both two-point discriminations and in another case of only the static two-point discrimination of 1-3 mm could be found between the short-term and long-term follow-up examination. Moreover, a late recovery of both two-point discriminations was demonstrated in another case. Four of 7 cases showed a sensory improvement by one Semmes-Weinstein Monofilaments. This pilot study suggests that sensory recovery still takes place even when clinical signs of progressing regeneration disappear.

9.
Microsurgery ; 34(8): 608-15, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25088084

ABSTRACT

BACKGROUND: Muscle-in-vein conduits are a good alternative solution to nerve autografts for bridging peripheral nerve defects since enough graft material is available and no loss of sensation at the harvesting area is expected. The purpose of this study was to compare regeneration results after digital nerve reconstruction with muscle-in-vein conduits, nerve autografts, or direct suture. PATIENTS AND METHODS: 46 patients with 53 digital nerve injuries of the hand subjected to direct suture (n = 22) or reconstruction of 1-6 cm long defects with either nerve autografts (n = 14) or muscle-in-vein conduits (n = 17) between 2008 and 2012, were examined using the two-point discrimination and Semmes-Weinstein Monofilaments. RESULTS: The follow-up examinations took place 12 to 58 months after surgery. A median reduction of sensibility of 2 Semmes-Weinstein monofilaments compared with intact digits was observed after direct suture (DS) and of 2.5 and 2 Semmes-Weinstein monofilaments after reconstruction with autologous nerve grafts (ANG) and muscle-in-vein conduits (MVC), respectively. No statistically significant differences between all three groups could be found with a significance level set by a P < 0.006 (PDS-ANG = 0.24, PDS-MVC = 0.03, PANG-MVC = 0.52). After harvesting a nerve graft, reduction of sensibility at the donor site occurred in 10 of 14 cases but only in one case after harvesting a muscle-in-vein conduit. CONCLUSIONS: Muscle-in-vein conduits may be a good alternative solution to autografts for the reconstruction of digital nerves, since no significant differences could be demonstrated between the two methods.


Subject(s)
Fingers/innervation , Hand Injuries/surgery , Nerve Regeneration/physiology , Peripheral Nerve Injuries/surgery , Plastic Surgery Procedures/methods , Sensation/physiology , Adolescent , Adult , Aged , Child , Female , Follow-Up Studies , Humans , Male , Microsurgery , Middle Aged , Muscle, Skeletal/transplantation , Peripheral Nerves/transplantation , Recovery of Function/physiology , Retrospective Studies , Surgically-Created Structures , Suture Techniques , Transplantation, Autologous , Treatment Outcome , Veins/transplantation , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL