Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 143(42): 17751-17760, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34658244

ABSTRACT

The properties of metal/dioxygen species, which are key intermediates in oxidation catalysis, can be modulated by interaction with redox-inactive Lewis acids, but structural information about these adducts is scarce. Here we demonstrate that even mildly Lewis acidic alkali metal ions, which are typically viewed as innocent "spectators", bind strongly to a reactive cis-peroxo dicopper(II) intermediate. Unprecedented structural insight has now been obtained from X-ray crystallographic characterization of the "bare" CuII2(µ-η1:η1-O2) motif and its Li+, Na+, and K+ complexes. UV-vis, Raman, and electrochemical studies show that the binding persists in MeCN solution, growing stronger in proportion to the cation's Lewis acidity. The affinity for Li+ is surprisingly high (∼70 × 104 M-1), leading to Li+ extraction from its crown ether complex. Computational analysis indicates that the alkali ions influence the entire Cu-OO-Cu core, modulating the degree of charge transfer from copper to dioxygen. This induces significant changes in the electronic, magnetic, and electrochemical signatures of the Cu2O2 species. These findings have far-reaching implications for analyses of transient metal/dioxygen intermediates, which are often studied in situ, and they may be relevant to many (bio)chemical oxidation processes when considering the widespread presence of alkali cations in synthetic and natural environments.

2.
J Am Chem Soc ; 143(27): 10361-10366, 2021 07 14.
Article in English | MEDLINE | ID: mdl-34191490

ABSTRACT

Superoxo complexes of copper are primary adducts in several O2-activating Cu-containing metalloenzymes as well as in other Cu-mediated oxidation and oxygenation reactions. Because of their intrinsically high reactivity, however, isolation of Cux(O2•-) species is challenging. Recent work (J. Am. Chem. Soc. 2017, 139, 9831; 2019, 141, 12682) established fundamental thermochemical data for the H atom abstraction reactivity of dicopper(II) superoxo complexes, but structural characterization of these important intermediates was so far lacking. Here we report the first crystallographic structure determination of a superoxo dicopper(II) species (3) together with the structure of its 1e- reduced peroxo congener (2; a rare cis-µ-1,2-peroxo dicopper(II) complex). Interconversion of 2 and 3 occurs at low potential (-0.58 V vs Fc/Fc+) and is reversible both chemically and electrochemically. Comparison of metric parameters (d(O-O) = 1.441(2) Å for 2 vs 1.329(7) Å for 3) and of spectroscopic signatures (ν̃(16O-16O) = 793 cm-1 for 2 vs 1073 cm-1 for 3) reflects that the redox process occurs at the bridging O2-derived unit. The CuII-O2•--CuII complex has an S = 1/2 spin ground state according to magnetic and EPR data, in agreement with density functional theory calculations. Computations further show that the potential associated with changes of the Cu-O-O-Cu dihedral angle is shallow for both 2 and 3. These findings provide a structural basis for the low reorganization energy of the kinetically facile 1e- interconversion of µ-1,2-superoxo/peroxo dicopper(II) couples, and they open the door for comprehensive studies of these key intermediates in Cux/O2 chemistry.

3.
Angew Chem Int Ed Engl ; 60(4): 1891-1896, 2021 Jan 25.
Article in English | MEDLINE | ID: mdl-33026170

ABSTRACT

The dinickel(II) dihydride complex (1K ) of a pyrazolate-based compartmental ligand with ß-diketiminato (nacnac) chelate arms (L- ), providing two pincer-type {N3 } binding pockets, has been reported to readily eliminate H2 and to serve as a masked dinickel(I) species. Discrete dinickel(I) complexes (2Na , 2K ) of L- are now synthesized via a direct reduction route. They feature two adjacent T-shaped metalloradicals that are antiferromagnetically coupled, giving an S=0 ground state. The two singly occupied local d x 2 - y 2 type magnetic orbitals are oriented into the bimetallic cleft, enabling metal-metal cooperative 2 e- substrate reductions as shown by the rapid reaction with H2 or O2 . X-ray crystallography reveals distinctly different positions of the K+ in 1K and 2K , suggesting a stabilizing interaction of K+ with the dihydride unit in 1K . H2 release from 1K is triggered by peripheral γ-C protonation at the nacnac subunits, which DFT calculations show lowers the barrier for reductive H2 elimination from the bimetallic cleft.

4.
J Phys Chem Lett ; 8(17): 4214-4217, 2017 Sep 07.
Article in English | MEDLINE | ID: mdl-28825491

ABSTRACT

Lipid extracts are an excellent choice of model biomembrane; however at present, there are no commercially available lipid extracts or computational models that mimic microbial membranes containing the branched-chain fatty acids found in many pathogenic and industrially relevant bacteria. We advance the extract of Bacillus subtilis as a standard model for these diverse systems, providing a detailed experimental description and equilibrated atomistic bilayer model included as Supporting Information to this Letter and at ( http://cmb.ornl.gov/members/cheng ). The development and validation of this model represents an advance that enables more realistic simulations and experiments on bacterial membranes and reconstituted bacterial membrane proteins.


Subject(s)
Bacillus subtilis , Cell Membrane/physiology , Membrane Proteins/chemistry , Models, Biological , Bacterial Proteins , Fatty Acids , Lipid Bilayers , Membrane Lipids
5.
Biotechnol Biofuels ; 8: 217, 2015.
Article in English | MEDLINE | ID: mdl-26697106

ABSTRACT

BACKGROUND: The conversion of plant biomass to ethanol via enzymatic cellulose hydrolysis offers a potentially sustainable route to biofuel production. However, the inhibition of enzymatic activity in pretreated biomass by lignin severely limits the efficiency of this process. RESULTS: By performing atomic-detail molecular dynamics simulation of a biomass model containing cellulose, lignin, and cellulases (TrCel7A), we elucidate detailed lignin inhibition mechanisms. We find that lignin binds preferentially both to the elements of cellulose to which the cellulases also preferentially bind (the hydrophobic faces) and also to the specific residues on the cellulose-binding module of the cellulase that are critical for cellulose binding of TrCel7A (Y466, Y492, and Y493). CONCLUSIONS: Lignin thus binds exactly where for industrial purposes it is least desired, providing a simple explanation of why hydrolysis yields increase with lignin removal.

6.
Biomacromolecules ; 15(11): 4152-9, 2014 Nov 10.
Article in English | MEDLINE | ID: mdl-25325376

ABSTRACT

The mechanical and dynamical properties of cellulose, the most abundant biomolecule on earth, are essential for its function in plant cell walls and advanced biomaterials. Cellulose is almost always found in a hydrated state, and it is therefore important to understand how hydration influences its dynamics and mechanics. Here, the nanosecond-time scale dynamics of cellulose is characterized using dynamic neutron scattering experiments and molecular dynamics (MD) simulation. The experiments reveal that hydrated samples exhibit a higher average mean-square displacement above ∼240 K. The MD simulation reveals that the fluctuations of the surface hydroxymethyl atoms determine the experimental temperature and hydration dependence. The increase in the conformational disorder of the surface hydroxymethyl groups with temperature follows the cellulose persistence length, suggesting a coupling between structural and mechanical properties of the biopolymer. In the MD simulation, 20% hydrated cellulose is more rigid than the dry form, due to more closely packed cellulose chains and water molecules bridging cellulose monomers with hydrogen bonds. This finding may have implications for understanding the origin of strength and rigidity of secondary plant cell walls. The detailed characterization obtained here describes how hydration-dependent increased fluctuations and hydroxymethyl disorder at the cellulose surface lead to enhancement of the rigidity of this important biomolecule.


Subject(s)
Cellulose/chemistry , Stress, Mechanical , Water/chemistry , Gluconacetobacter xylinus/chemistry
7.
Chem Rec ; 14(6): 1116-33, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25316264

ABSTRACT

A systematic review and analysis of the most stable spatial arrangements of n carbon, n oxygen, and 2n hydrogen atoms including vibrational zero-point energy up to n = 5 shows that small-molecule aggregates win, typically followed by thermally unstable molecules, before kinetically stable molecules and finally carbohydrates are found. Near n ≈ 60 a crossover to carbon allotropes and ice as the global minimum structure is expected and the asymptotic limit is most likely graphite and ice. Implications for astrochemical and fermentation processes are discussed. Density functionals like B3LYPD3 are found to describe these energy sequences quite poorly, mostly due to an overestimated stability of carbon in high oxidation states.


Subject(s)
Carbohydrates/chemistry , Quantum Theory
8.
Biomacromolecules ; 14(10): 3390-8, 2013 Oct 14.
Article in English | MEDLINE | ID: mdl-23980921

ABSTRACT

The precipitation of lignin onto cellulose after pretreatment of lignocellulosic biomass is an obstacle to economically viable cellulosic ethanol production. Here, 750 ns nonequilibrium molecular dynamics simulations are reported of a system of lignin and cellulose in aqueous solution. Lignin is found to strongly associate with itself and the cellulose. However, noncrystalline regions of cellulose are observed to have a lower tendency to associate with lignin than crystalline regions, and this is found to arise from stronger hydration of the noncrystalline chains. The results suggest that the recalcitrance of crystalline cellulose to hydrolysis arises not only from the inaccessibility of inner fibers but also due to the promotion of lignin adhesion.


Subject(s)
Cellulose/chemistry , Lignin/chemistry , Molecular Dynamics Simulation , Crystallization , Models, Molecular , Solvents/chemistry
9.
Biophys J ; 104(4): 904-12, 2013 Feb 19.
Article in English | MEDLINE | ID: mdl-23442969

ABSTRACT

Cellobiohydrolases processively hydrolyze glycosidic linkages in individual polymer chains of cellulose microfibrils, and typically exhibit specificity for either the reducing or nonreducing end of cellulose. Here, we conduct molecular dynamics simulations and free energy calculations to examine the initial binding of a cellulose chain into the catalytic tunnel of the reducing-end-specific Family 7 cellobiohydrolase (Cel7A) from Hypocrea jecorina. In unrestrained simulations, the cellulose diffuses into the tunnel from the -7 to the -5 positions, and the associated free energy profiles exhibit no barriers for initial processivity. The comparison of the free energy profiles for different cellulose chain orientations show a thermodynamic preference for the reducing end, suggesting that the preferential initial binding may affect the directional specificity of the enzyme by impeding nonproductive (nonreducing end) binding. Finally, the Trp-40 at the tunnel entrance is shown with free energy calculations to have a significant effect on initial chain complexation in Cel7A.


Subject(s)
Cellulose 1,4-beta-Cellobiosidase/metabolism , Cellulose/analogs & derivatives , Dextrins/metabolism , Amino Acid Sequence , Catalytic Domain , Cellulose/metabolism , Cellulose 1,4-beta-Cellobiosidase/chemistry , Hypocrea/enzymology , Molecular Dynamics Simulation , Molecular Sequence Data , Protein Binding
10.
Bioinformatics ; 29(7): 845-54, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23407358

ABSTRACT

MOTIVATION: Molecular simulation has historically been a low-throughput technique, but faster computers and increasing amounts of genomic and structural data are changing this by enabling large-scale automated simulation of, for instance, many conformers or mutants of biomolecules with or without a range of ligands. At the same time, advances in performance and scaling now make it possible to model complex biomolecular interaction and function in a manner directly testable by experiment. These applications share a need for fast and efficient software that can be deployed on massive scale in clusters, web servers, distributed computing or cloud resources. RESULTS: Here, we present a range of new simulation algorithms and features developed during the past 4 years, leading up to the GROMACS 4.5 software package. The software now automatically handles wide classes of biomolecules, such as proteins, nucleic acids and lipids, and comes with all commonly used force fields for these molecules built-in. GROMACS supports several implicit solvent models, as well as new free-energy algorithms, and the software now uses multithreading for efficient parallelization even on low-end systems, including windows-based workstations. Together with hand-tuned assembly kernels and state-of-the-art parallelization, this provides extremely high performance and cost efficiency for high-throughput as well as massively parallel simulations. AVAILABILITY: GROMACS is an open source and free software available from http://www.gromacs.org. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Molecular Dynamics Simulation , Software , Algorithms , Proteins/chemistry
12.
J Comput Chem ; 33(12): 1207-14, 2012 May 05.
Article in English | MEDLINE | ID: mdl-22370965

ABSTRACT

We report on a python interface to the GROMACS molecular simulation package, GromPy (available at https://github.com/GromPy). This application programming interface (API) uses the ctypes python module that allows function calls to shared libraries, for example, written in C. To the best of our knowledge, this is the first reported interface to the GROMACS library that uses direct library calls. GromPy can be used for extending the current GROMACS simulation and analysis modes. In this work, we demonstrate that the interface enables hybrid Monte-Carlo/molecular dynamics (MD) simulations in the grand-canonical ensemble, a simulation mode that is currently not implemented in GROMACS. For this application, the interplay between GromPy and GROMACS requires only minor modifications of the GROMACS source code, not affecting the operation, efficiency, and performance of the GROMACS applications. We validate the grand-canonical application against MD in the canonical ensemble by comparison of equations of state. The results of the grand-canonical simulations are in complete agreement with MD in the canonical ensemble. The python overhead of the grand-canonical scheme is only minimal.


Subject(s)
Molecular Dynamics Simulation , Monte Carlo Method , Software
13.
J Am Chem Soc ; 133(50): 20277-87, 2011 Dec 21.
Article in English | MEDLINE | ID: mdl-22035184

ABSTRACT

Lignins are hydrophobic, branched polymers that regulate water conduction and provide protection against chemical and biological degradation in plant cell walls. Lignins also form a residual barrier to effective hydrolysis of plant biomass pretreated at elevated temperatures in cellulosic ethanol production. Here, the temperature-dependent structure and dynamics of individual softwood lignin polymers in aqueous solution are examined using extensive (17 µs) molecular dynamics simulations. With decreasing temperature the lignins are found to transition from mobile, extended to glassy, compact states. The polymers are composed of blobs, inside which the radius of gyration of a polymer segment is a power-law function of the number of monomers comprising it. In the low temperature states the blobs are interpermeable, the polymer does not conform to Zimm/Stockmayer theory, and branching does not lead to reduction of the polymer size, the radius of gyration being instead determined by shape anisotropy. At high temperatures the blobs become spatially separated leading to a fractal crumpled globule form. The low-temperature collapse is thermodynamically driven by the increase of the translational entropy and density fluctuations of water molecules removed from the hydration shell, thus distinguishing lignin collapse from enthalpically driven coil-globule polymer transitions and providing a thermodynamic role of hydration water density fluctuations in driving hydrophobic polymer collapse. Although hydrophobic, lignin is wetted, leading to locally enhanced chain dynamics of solvent-exposed monomers. The detailed characterization obtained here provides insight at atomic detail into processes relevant to biomass pretreatment for cellulosic ethanol production and general polymer coil-globule transition phenomena.


Subject(s)
Lignin/chemistry , Temperature , Molecular Dynamics Simulation , Thermodynamics
14.
J Comput Chem ; 32(6): 1202-9, 2011 Apr 30.
Article in English | MEDLINE | ID: mdl-21387347

ABSTRACT

A message passing interface (MPI)-based implementation (Autodock4.lga.MPI) of the grid-based docking program Autodock4 has been developed to allow simultaneous and independent docking of multiple compounds on up to thousands of central processing units (CPUs) using the Lamarkian genetic algorithm. The MPI version reads a single binary file containing precalculated grids that represent the protein-ligand interactions, i.e., van der Waals, electrostatic, and desolvation potentials, and needs only two input parameter files for the entire docking run. In comparison, the serial version of Autodock4 reads ASCII grid files and requires one parameter file per compound. The modifications performed result in significantly reduced input/output activity compared with the serial version. Autodock4.lga.MPI scales up to 8192 CPUs with a maximal overhead of 16.3%, of which two thirds is due to input/output operations and one third originates from MPI operations. The optimal docking strategy, which minimizes docking CPU time without lowering the quality of the database enrichments, comprises the docking of ligands preordered from the most to the least flexible and the assignment of the number of energy evaluations as a function of the number of rotatable bounds. In 24 h, on 8192 high-performance computing CPUs, the present MPI version would allow docking to a rigid protein of about 300K small flexible compounds or 11 million rigid compounds.


Subject(s)
Computer Simulation , Computers , Databases, Protein , Proteins/chemistry , Software , Algorithms , Drug Design , High-Throughput Screening Assays/methods
15.
Biophys J ; 96(2): 476-84, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19167298

ABSTRACT

In the instantaneous normal mode method, normal mode analysis is performed at instantaneous configurations of a condensed-phase system, leading to modes with negative eigenvalues. These negative modes provide a means of characterizing local anharmonicities of the potential energy surface. Here, we apply instantaneous normal mode to analyze temperature-dependent diffusive dynamics in molecular dynamics simulations of a small protein (a scorpion toxin). Those characteristics of the negative modes are determined that correlate with the dynamical (or glass) transition behavior of the protein, as manifested as an increase in the gradient with T of the average atomic mean-square displacement at approximately 220 K. The number of negative eigenvalues shows no transition with temperature. Further, although filtering the negative modes to retain only those with eigenvectors corresponding to double-well potentials does reveal a transition in the hydration water, again, no transition in the protein is seen. However, additional filtering of the protein double-well modes, so as to retain only those that, on energy minimization, escape to different regions of configurational space, finally leads to clear protein dynamical transition behavior. Partial minimization of instantaneous configurations is also found to remove nondiffusive imaginary modes. In summary, examination of the form of negative instantaneous normal modes is shown to furnish a physical picture of local diffusive dynamics accompanying the protein glass transition.


Subject(s)
Models, Molecular , Neurotoxins/chemistry , Proteins/chemistry , Scorpion Venoms/chemistry , Animals , Computer Simulation , Phase Transition , Software , Temperature
16.
J Chem Theory Comput ; 5(10): 2798-808, 2009 Oct 13.
Article in English | MEDLINE | ID: mdl-26631792

ABSTRACT

A strategy is described for a fast all-atom molecular dynamics simulation of multimillion-atom biological systems on massively parallel supercomputers. The strategy is developed using benchmark systems of particular interest to bioenergy research, comprising models of cellulose and lignocellulosic biomass in an aqueous solution. The approach involves using the reaction field (RF) method for the computation of long-range electrostatic interactions, which permits efficient scaling on many thousands of cores. Although the range of applicability of the RF method for biomolecular systems remains to be demonstrated, for the benchmark systems the use of the RF produces molecular dipole moments, Kirkwood G factors, other structural properties, and mean-square fluctuations in excellent agreement with those obtained with the commonly used Particle Mesh Ewald method. With RF, three million- and five million-atom biological systems scale well up to ∼30k cores, producing ∼30 ns/day. Atomistic simulations of very large systems for time scales approaching the microsecond would, therefore, appear now to be within reach.

SELECTION OF CITATIONS
SEARCH DETAIL