Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Oncogene ; 39(31): 5390-5404, 2020 07.
Article in English | MEDLINE | ID: mdl-32565538

ABSTRACT

The androgen receptor (AR) is the major driver of prostate cancer growth and survival. However, almost all patients relapse with castration-resistant disease (CRPC) when treated with anti-androgen therapy. In CRPC, AR is often aberrantly activated independent of androgen. Targeting survival pathways downstream of AR could be a viable strategy to overcome CRPC. Surprisingly, little is known about how AR drives prostate cancer survival. Furthermore, CRPC tumors in which Pten is lost are also resistant to eradication by PI3K inhibitors. We sought to identify the mechanism by which AR drives tumor survival in CRPC to identify ways to overcome resistance to PI3K inhibition. We found that integrins α6ß1 and Bnip3 are selectively elevated in CRPC downstream of AR. While integrin α6 promotes survival and is a direct transcriptional target of AR, the ability of AR to induce Bnip3 is dependent on adhesion to laminin and integrin α6ß1-dependent nuclear translocation of HIF1α. Integrins α6ß1 and Bnip3 were found to promote survival of CRPC cells selectively on laminin through the induction of autophagy and mitophagy. Furthermore, blocking Bnip3 or integrin α6ß1 restored sensitivity to PI3K inhibitors in Pten-negative CRPC. We identified an AR driven pathway that cooperates with laminin and hypoxia to drive resistance to PI3K inhibitors. These findings can help explain in part why PI3K inhibitors have failed in clinical trials to overcome AR-dependent CRPC.


Subject(s)
Integrin alpha6beta1/metabolism , Membrane Proteins/metabolism , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Proto-Oncogene Proteins/metabolism , Receptors, Androgen/genetics , Animals , Humans , Male , Protein Kinase Inhibitors/therapeutic use , Receptors, Androgen/metabolism , Survival Analysis
2.
Am J Clin Exp Urol ; 7(4): 297-312, 2019.
Article in English | MEDLINE | ID: mdl-31511835

ABSTRACT

Bone-metastatic castration-resistant prostate cancer (CRPC) is lethal due to inherent resistance to androgen deprivation therapy, chemotherapy, and targeted therapies. Despite the fact that a majority of CRPC patients (approximately 70%) harbor a constitutively active PI3K survival pathway, targeting the PI3K/mTOR pathway has failed to increase overall survival in clinical trials. Here, we identified two separate and independent survival pathways induced by the bone tumor microenvironment that are hyperactivated in CRPC and confer resistance to PI3K inhibitors. The first pathway involves integrin α6ß1-mediated adhesion to laminin and the second involves hypoxia-induced expression of PIM kinases. In vitro and in vivo models demonstrate that these pathways transduce parallel but independent signals that promote survival by reducing oxidative stress and preventing cell death. We further demonstrate that both pathways drive resistance to PI3K inhibitors in PTEN-negative tumors. These results provide preclinical evidence that combined inhibition of integrin α6ß1 and PIM kinase in CRPC is required to overcome tumor microenvironment-mediated resistance to PI3K inhibitors in PTEN-negative tumors within the hypoxic and laminin-rich bone microenvironment.

3.
BMC Biotechnol ; 17(1): 24, 2017 02 28.
Article in English | MEDLINE | ID: mdl-28245848

ABSTRACT

BACKGROUND: Short hairpin RNA (shRNA) is an established and effective tool for stable knock down of gene expression. Lentiviral vectors can be used to deliver shRNAs, thereby providing the ability to infect most mammalian cell types with high efficiency, regardless of proliferation state. Furthermore, the use of inducible promoters to drive shRNA expression allows for more thorough investigations into the specific timing of gene function in a variety of cellular processes. Moreover, inducible knockdown allows the investigation of genes that would be lethal or otherwise poorly tolerated if constitutively knocked down. Lentiviral inducible shRNA vectors are readily available, but unfortunately the process of cloning, screening, and testing shRNAs can be time-consuming and expensive. Therefore, we sought to refine a popular vector (Tet-pLKO-Puro) and streamline the cloning process with efficient protocols so that researchers can more efficiently utilize this powerful tool. METHODS: First, we modified the Tet-pLKO-Puro vector to make it easy ("EZ") for molecular cloning (EZ-Tet-pLKO-Puro). Our primary modification was to shrink the stuffer region, which allows vector purification via polyethylene glycol precipitation thereby avoiding the need to purify DNA through agarose. In addition, we generated EZ-Tet-pLKO vectors with hygromycin or blasticidin resistance to provide greater flexibility in cell line engineering. Furthermore, we provide a detailed guide for utilizing these vectors, including shRNA design strategy and simplified screening methods. RESULTS: Notably, we emphasize the importance of loop sequence design and demonstrate that the addition of a single mismatch in the loop stem can greatly improve shRNA efficiency. Lastly, we display the robustness of the system with a doxycycline titration and recovery time course and provide a cost/benefit analysis comparing our system with purchasing pre-designed shRNA vectors. CONCLUSIONS: Our aim was twofold: first, to take a very useful shRNA vector and make it more amenable for molecular cloning and, secondly, to provide a streamlined protocol and rationale for cost-effective design, cloning, and screening of shRNAs. With this knowledge, anyone can take advantage of this powerful tool to inducibly knockdown any gene of their choosing.


Subject(s)
Cloning, Molecular/methods , Gene Knockdown Techniques/methods , Genetic Vectors/genetics , Lentivirus/genetics , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/genetics , Doxycycline/pharmacology , Drug Design , Genetic Vectors/chemistry , Genetic Vectors/drug effects , Transfection/methods
4.
Mol Biol Cell ; 27(15): 2493-504, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27307589

ABSTRACT

Matrix adhesion via integrins is required for cell survival. Adhesion of epithelial cells to laminin via integrin α3ß1 was previously shown to activate at least two independent survival pathways. First, integrin α3ß1 is required for autophagy-induced cell survival after growth factor deprivation. Second, integrin α3ß1 independently activates two receptor tyrosine kinases, EGFR and Met, in the absence of ligands. EGFR signaling to Erk promotes survival independently of autophagy. To determine how Met promotes cell survival, we inhibited Met kinase activity or blocked its expression with RNA interference. Loss of Met expression, but not inhibition of Met kinase activity, induced apoptosis by reducing integrin α3ß1 levels, activating anoikis, and blocking autophagy. Met was specifically required for the assembly of autophagosomes downstream of LC3II processing. Reexpression of wild-type Met, kinase-dead Met, or integrin α3 was sufficient to rescue death upon removal of endogenous Met. Integrin α3ß1 coprecipitated and colocalized with Met in cells. The extracellular and transmembrane domain of Met was required to fully rescue cell death and restore integrin α3 expression. Thus Met promotes survival of laminin-adherent cells by maintaining integrin α3ß1 via a kinase-independent mechanism.


Subject(s)
Integrin alpha3beta1/metabolism , Proto-Oncogene Proteins c-met/metabolism , Apoptosis , Cell Adhesion/physiology , Cell Death , Cell Survival/physiology , Epithelial Cells/metabolism , Extracellular Matrix/metabolism , Humans , Integrin alpha3beta1/genetics , Integrins/metabolism , Laminin/metabolism , MAP Kinase Signaling System , Male , Matrix Attachment Regions , Phosphorylation , Primary Cell Culture , Prostate , Receptor Protein-Tyrosine Kinases/metabolism , Signal Transduction
5.
Oncotarget ; 6(9): 6862-76, 2015 Mar 30.
Article in English | MEDLINE | ID: mdl-25730905

ABSTRACT

Castration-resistant prostate cancers still depend on nuclear androgen receptor (AR) function despite their lack of dependence on exogenous androgen. Second generation anti-androgen therapies are more efficient at blocking nuclear AR; however resistant tumors still develop. Recent studies indicate Src is highly active in these resistant tumors. By manipulating AR activity in several different prostate cancer cell lines through RNAi, drug treatment, and the use of a nuclear-deficient AR mutant, we demonstrate that androgen acting on cytoplasmic AR rapidly stimulates Src tyrosine kinase via a non-genomic mechanism. Cytoplasmic AR, acting through Src enhances laminin integrin-dependent invasion. Active Matriptase, which cleaves laminin, is elevated within minutes after androgen stimulation, and is subsequently shed into the medium. Matriptase activation and shedding induced by cytoplasmic AR is dependent on Src. Concomitantly, CDCP1/gp140, a Matriptase and Src substrate that controls integrin-based migration, is activated. However, only inhibition of Matriptase, but not CDCP1, suppresses the AR/Src-dependent increase in invasion. Matriptase, present in conditioned medium from AR-stimulated cells, is sufficient to enhance invasion in the absence of androgen. Thus, invasion is stimulated by a rapid but sustained increase in Src activity, mediated non-genomically by cytoplasmic AR, leading to rapid activation and shedding of the laminin protease Matriptase.


Subject(s)
Gene Expression Regulation, Neoplastic , Prostatic Neoplasms/metabolism , Receptors, Androgen/metabolism , Serine Endopeptidases/metabolism , src-Family Kinases/metabolism , Androgens/metabolism , Cell Line, Tumor , Cell Movement , Cell Shape , Culture Media, Conditioned/chemistry , Cytoplasm/metabolism , Humans , Integrin alpha6beta1/metabolism , Laminin/chemistry , Male , Neoplasm Invasiveness , RNA Interference , RNA, Small Interfering/metabolism , Signal Transduction , Transcription, Genetic
6.
Cancer Res ; 74(12): 3357-68, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24762396

ABSTRACT

The mechanisms by which Myc overexpression or Pten loss promotes prostate cancer development are poorly understood. We identified the chromatin remodeling protein, ING4, as a crucial switch downstream of Myc and Pten that is required for human prostate epithelial differentiation. Myc-induced transient expression of ING4 is required for the differentiation of basal epithelial cells into luminal cells, while sustained ING4 expression induces apoptosis. ING4 expression is lost in >60% of human primary prostate tumors. ING4 or Pten loss prevents epithelial cell differentiation, which was necessary for tumorigenesis. Pten loss prevents differentiation by blocking ING4 expression, which is rescued by ING4 re-expression. Pten or ING4 loss generates tumor cells that co-express basal and luminal markers, indicating prostate oncogenesis occurs through disruption of an intermediate step in the prostate epithelial differentiation program. Thus, we identified a new epithelial cell differentiation switch involving Myc, Pten, and ING4, which when disrupted leads to prostate tumorigenesis. Myc overexpression and Pten loss are common genetic abnormalities in prostate cancer, whereas loss of the tumor suppressor ING4 has not been reported. This is the first demonstration that transient ING4 expression is absolutely required for epithelial differentiation, its expression is dependent on Myc and Pten, and it is lost in the majority of human prostate cancers. This is the first demonstration that loss of ING4, either directly or indirectly through loss of Pten, promotes Myc-driven oncogenesis by deregulating differentiation. The clinical implication is that Pten/ING4 negative and ING4-only negative tumors may reflect two distinct subtypes of prostate cancer.


Subject(s)
Carcinogenesis/metabolism , Cell Cycle Proteins/genetics , Epithelial Cells/physiology , Homeodomain Proteins/genetics , Prostatic Neoplasms/metabolism , Proto-Oncogene Proteins c-myc/physiology , Transcriptional Activation , Tumor Suppressor Proteins/genetics , Animals , Apoptosis , Carcinogenesis/genetics , Cell Cycle Proteins/metabolism , Cell Differentiation , Homeodomain Proteins/metabolism , Humans , Male , Membrane Proteins/metabolism , Mice , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Prostate/metabolism , Prostate/pathology , Prostatic Neoplasms/genetics , Proto-Oncogene Proteins/metabolism , Tumor Suppressor Proteins/metabolism
7.
Cell Commun Signal ; 7: 10, 2009 Apr 28.
Article in English | MEDLINE | ID: mdl-19400942

ABSTRACT

BACKGROUND: Integrins, cell-surface receptors that mediate adhesive interactions between cells and the extracellular matrix (ECM), play an important role in cancer progression. Expression of the vitronectin receptor alphavbeta3 integrin correlates with increased invasive and metastatic capacity of malignant melanomas, yet it remains unclear how expression of this integrin triggers melanoma invasion and metastasis. RESULTS: Two melanoma cell lines C8161.9 and M14 both express high levels of alphavbeta3 integrin and adhere to vitronectin. However, only the highly metastatic C8161.9 cells are capable of invading vitronectin-enriched Matrigel in an alphavbeta3-depenent manner. Elevated levels of PKCalpha and PKCdelta, and activated Src were detected specifically in the highly metastatic melanoma cells, but not in the low metastatic M14 cells. Inhibition of Src or PKC activity suppressed alphavbeta3-dependent invasion. Furthermore, over expression of Src or PKCalpha and PKCdelta was sufficient to confer alphavbeta3-dependent invasiveness to M14 cells. Stress fiber formation and focal adhesion formation were almost completely absent in C8161.9 cells compared to M14 cells. Inhibition of Src signaling was sufficient to restore normal actin architecture, and resulted in decreased p190RhoGAP phosphorylation and enhanced RhoA activity. Src had no effect on Rac activity. Loss of PKCalpha expression, but not PKCdelta, by siRNA inhibited Rac and PAK activity as well as invasiveness. Loss of PKCalpha restored focal adhesion formation and partially restored stress fiber formation, while loss of PKCdelta primarily restored stress fibers. CONCLUSION: The misregulated expression of PKCalpha and PKCdelta and elevated Src activity in metastatic melanoma cells is required for efficient alphavbeta3-mediated invasion. PKCalpha and Src enhance alphavbeta3-mediated invasion in part by increasing the GTPase activity of Rac relative to RhoA. PKCalpha influences focal adhesion formation, while PKCdelta controls stress fibers.

SELECTION OF CITATIONS
SEARCH DETAIL
...