Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 250
Filter
1.
Clin Res Cardiol ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753001

ABSTRACT

BACKGROUND: Psoriasis vulgaris (PV) is a chronic inflammatory disorder frequently associated with cardiovascular disease (CVD). This study aims to provide a prospective tissue characterization in patients with PV without major CVD using cardiovascular magnetic resonance (CMR). METHODS: Patients with PV underwent laboratory assessment, a 12-lead and 24-h ECG, and a CMR exam at a 1.5-T scanner. Scan protocol included assessment of left (LV) and right (RV) ventricular function and strain analysis, native and post-contrast T1 mapping, T2 mapping and late gadolinium enhancement (LGE). RESULTS: In total, 60 PV patients (median(IQR) age in years: 50.0 (36.0-60.8); 34 men (56.7%)) were recruited and compared to 40 healthy volunteers (age in years: 49.5 (37.3-57.8); 21 men (53.0%)). No differences were found regarding LV and RV function (p = 0.78 and p = 0.75). Global radial and circumferential strains were lower in patients (p < 0.001 and p < 0.001, respectively). PV had higher global T1 times (1001 (982-1026) ms vs. 991 (968-1005) ms; p = 0.01) and lower global T2 times (48 (47-49) ms vs. 50 (48-51) ms; p < 0.001); however, all values were within local reference ranges. Focal non-ischemic fibrosis was observed in 17 (28.3%) PV patients. CONCLUSION: Deep cardiac phenotyping by CMR revealed subclinical myocardial injury in patients with PV without major CVD, despite preserved LV and RV function. Diffuse and focal fibrosis might be the first detectable signs of adverse tissue remodeling leading to reduced circumferential and radial myocardial deformation. In the background of local and systemic immunomodulatory therapy, no signs of myocardial inflammation were detected. The exact impact of immunomodulatory therapies on the myocardium needs to be addressed in future studies. STUDY REGISTRATION: ISRCTN71534700.

2.
Front Cardiovasc Med ; 11: 1357349, 2024.
Article in English | MEDLINE | ID: mdl-38628318

ABSTRACT

Introduction: Myocardial tissue alterations in patients with post-Coronavirus disease 2019 syndrome (PCS) are often subtle and mild. Reports vary in the prevalence of non-ischemic and ischemic injuries as well as the extent of ongoing myocardial inflammation. The exact relevance of these myocardial alterations is not fully understood. This study aimed at describing the trajectories of myocardial alterations in PCS patients by mid-term follow-up with cardiovascular magnetic resonance (CMR). Methods: This study entails a retrospective analysis of symptomatic PCS patients referred for follow-up CMR between August 2020 and May 2023 due to mildly affected or reduced left or right ventricular function (LV and RV, respectively) and structural myocardial alterations, e.g., focal and diffuse fibrosis, on baseline scans. Follow-up CMR protocol consisted of cine images and full coverage native T1 and T2 mapping. Baseline and follow-up scans were compared using t-tests or Wilcoxon tests. Post-hoc analysis was carried out in a subgroup based on the change of LV stroke volume (SV) between scans. Results: In total, 43 patients [median age (interquartile range) 46 (37-56) years, 33 women] received follow-ups 347 (167-651) days after initial diagnosis. A decrease in symptoms was recorded on follow-ups (p < 0.03) with 23 patients being asymptomatic at follow-ups [symptomatic at baseline 43/43 (100%) vs. symptomatic at follow-up 21/43 (49%), p < 0.001]. Functional improvement was noted for LV-SV [83.3 (72.7-95.0) vs. 84.0 (77.0-100.3) ml; p = 0.045], global radial [25.3% (23.4%-27.9%) vs. 27.4% (24.4%-33.1%); p < 0.001], and circumferential strains [-16.5% (-17.5% to -15.6%) vs. -17.2% (-19.5% to -16.1%); p < 0.001]. In total, 17 patients had an LV-SV change >10% on follow-up scans (5 with a decrease and 12 with an increase), with LV-SV, RV-SV, and global longitudinal strain being discriminatory variables on baseline scans (p = 0.01, 0.02, and 0.04, respectively). T1- or T2-analysis revealed no changes, remaining within normal limits. Conclusion: Symptomatic load as well as blood pressures decreased on follow-up. CMR did not detect significant changes in tissue parameters; however, volumetric, specifically LV-SV, and deformation indexes improved during mid-term follow-up.

3.
Phys Med Biol ; 69(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38479021

ABSTRACT

Objective. To provide three-dimensional (3D) whole-heart high-resolution isotropic cardiac T1 maps using a k-space-based through-plane super-resolution reconstruction (SRR) with rotated multi-slice stacks.Approach. Due to limited SNR and cardiac motion, often only 2D T1 maps with low through-plane resolution (4-8 mm) can be obtained. Previous approaches used SRR to calculate 3D high-resolution isotropic cardiac T1 maps. However, they were limited to the ventricles. The proposed approach acquires rotated stacks in long-axis orientation with high in-plane resolution but low through-plane resolution. This results in radially overlapping stacks from which high-resolution T1 maps of the whole heart are reconstructed using a k-space-based SRR framework considering the complete acquisition model. Cardiac and residual respiratory motion between different breath holds is estimated and incorporated into the reconstruction. The proposed approach was evaluated in simulations and phantom experiments and successfully applied to ten healthy subjects.Main results. 3D T1 maps of the whole heart were obtained in the same acquisition time as previous methods covering only the ventricles. T1 measurements were possible even for small structures, such as the atrial wall. The proposed approach provided accurate (P> 0.4;R2> 0.99) and precise T1 values (SD of 64.32 ± 22.77 ms in the proposed approach, 44.73 ± 31.9 ms in the reference). The edge sharpness of the T1 maps was increased by 6.20% and 4.73% in simulation and phantom experiments, respectively. Contrast-to-noise ratios between the septum and blood pool increased by 14.50% inin vivomeasurements with a k-space compared to an image-space-based SRR.Significance. The proposed approach provided whole-heart high-resolution 1.3 mm isotropic T1 maps in an overall acquisition time of approximately three minutes. Small structures, such as the atrial and right ventricular walls, could be visualized in the T1 maps.


Subject(s)
Imaging, Three-Dimensional , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Imaging, Three-Dimensional/methods , Heart/diagnostic imaging , Heart Ventricles/diagnostic imaging , Breath Holding , Heart Atria , Phantoms, Imaging , Reproducibility of Results
4.
Eur J Radiol ; 174: 111386, 2024 May.
Article in English | MEDLINE | ID: mdl-38447431

ABSTRACT

PURPOSE: Studies have shown the incremental value of strain imaging in various cardiac diseases. However, reproducibility and generalizability has remained an issue of concern. To overcome this, simplified algorithms such as rapid atrioventricular strains have been proposed. This multicenter study aimed to assess the reproducibility of rapid strains in a real-world setting and identify potential predictors for higher interobserver variation. METHODS: A total of 4 sites retrospectively identified 80 patients and 80 healthy controls who had undergone cardiac magnetic resonance imaging (CMR) at their respective centers using locally available scanners with respective field strengths and imaging protocols. Strain and volumetric parameters were measured at each site and then independently re-evaluated by a blinded core lab. Intraclass correlation coefficients (ICC) and Bland-Altman plots were used to assess inter-observer agreement. In addition, backward multiple linear regression analysis was performed to identify predictors for higher inter-observer variation. RESULTS: There was excellent agreement between sites in feature-tracking and rapid strain values (ICC ≥ 0.96). Bland-Altman plots showed no significant bias. Bi-atrial feature-tracking and rapid strains showed equally excellent agreement (ICC ≥ 0.96) but broader limits of agreement (≤18.0 % vs. ≤3.5 %). Regression analysis showed that higher field strength and lower temporal resolution (>30 ms) independently predicted reduced interobserver agreement for bi-atrial strain parameters (ß = 0.38, p = 0.02 for field strength and ß = 0.34, p = 0.02 for temporal resolution). CONCLUSION: Simplified rapid left ventricular and bi-atrial strain parameters can be reliably applied in a real-world multicenter setting. Due to the results of the regression analysis, a minimum temporal resolution of 30 ms is recommended when assessing atrial deformation.


Subject(s)
Magnetic Resonance Imaging, Cine , Magnetic Resonance Imaging , Humans , Retrospective Studies , Reproducibility of Results , Magnetic Resonance Imaging, Cine/methods , Heart Atria , Observer Variation , Ventricular Function, Left
5.
Clin Res Cardiol ; 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38466347

ABSTRACT

BACKGROUND: Aging as a major non-modifiable cardiac risk factor challenges future cardiovascular medicine and economic demands, which requires further assessments addressing physiological age-associated cardiac changes. OBJECTIVES: Using cardiovascular magnetic resonance (CMR), this study aims to characterize sex-specific ventricular adaptations during healthy aging. METHODS: The population included healthy volunteers who underwent CMR at 1.5 or 3 Tesla scanners applying cine-imaging with a short-axis coverage of the left (LV) and right (RV) ventricle. The cohort was divided by sex (female and male) and age (subgroups in years): 1 (19-29), 2 (30-39), 3 (40-49), and 4 (≥50). Cardiac adaptations were quantitatively assessed by CMR indices. RESULTS: After the exclusion of missing or poor-quality CMR datasets or diagnosed disease, 140 of 203 volunteers were part of the final analysis. Women generally had smaller ventricular dimensions and LV mass, but higher biventricular systolic function. There was a significant age-associated decrease in ventricular dimensions as well as a significant increase in LV mass-to-volume ratio (LV-MVR, concentricity) in both sexes (LV-MVR in g/ml: age group 1 vs. 4: females 0.50 vs. 0.57, p=0.016, males 0.56 vs. 0.67, p=0.024). LV stroke volume index decreased significantly with age in both sexes, but stronger for men than for women (in ml/m2: age group 1 vs. 4: females 51.76 vs. 41.94, p<0.001, males 55.31 vs. 40.78, p<0.001). Ventricular proportions (RV-to-LV-volume ratio) were constant between the age groups in both sexes. CONCLUSIONS: In both sexes, healthy aging was associated with an increase in concentricity and a decline in ventricular dimensions. Furthermore, relevant age-related sex differences in systolic LV performance were observed.

6.
EBioMedicine ; 102: 105055, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38490103

ABSTRACT

BACKGROUND: In cardiovascular magnetic resonance imaging parametric T1 mapping lacks universally valid reference values. This limits its extensive use in the clinical routine. The aim of this work was the introduction of our self-developed Magnetic Resonance Imaging Software for Standardization (MARISSA) as a post-hoc standardisation approach. METHODS: Our standardisation approach minimises the bias of confounding parameters (CPs) on the base of regression models. 214 healthy subjects with 814 parametric T1 maps were used for training those models on the CPs: age, gender, scanner and sequence. The training dataset included both sex, eleven different scanners and eight different sequences. The regression model type and four other adjustable standardisation parameters were optimised among 240 tested settings to achieve the lowest coefficient of variation, as measure for the inter-subject variability, in the mean T1 value across the healthy test datasets (HTE, N = 40, 156 T1 maps). The HTE were then compared to 135 patients with left ventricular hypertrophy including hypertrophic cardiomyopathy (HCM, N = 112, 121 T1 maps) and amyloidosis (AMY, N = 24, 24 T1 maps) after applying the best performing standardisation pipeline (BPSP) to evaluate the diagnostic accuracy. FINDINGS: The BPSP reduced the COV of the HTE from 12.47% to 5.81%. Sensitivity and specificity reached 95.83% / 91.67% between HTE and AMY, 71.90% / 72.44% between HTE and HCM, and 87.50% / 98.35% between HCM and AMY. INTERPRETATION: Regarding the BPSP, MARISSA enabled the comparability of T1 maps independently of CPs while keeping the discrimination of healthy and patient groups as found in literature. FUNDING: This study was supported by the BMBF / DZHK.


Subject(s)
Cardiomyopathy, Hypertrophic , Heart , Humans , Heart/diagnostic imaging , Magnetic Resonance Imaging , Cardiomyopathy, Hypertrophic/pathology , Magnetic Resonance Spectroscopy , Reference Standards , Myocardium/pathology , Predictive Value of Tests , Contrast Media
7.
Int J Cardiovasc Imaging ; 40(3): 643-654, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38308113

ABSTRACT

The objective of this study was to assess whether dietary-induced weight loss improves myocardial deformation in people with overweight to obesity without established cardiovascular disease applying cardiovascular magnetic resonance (CMR) with feature tracking (FT) based strain analysis. Ninety people with overweight to obesity without established cardiovascular disease (age 44.6 ± 9.3 years, body mass index (BMI) 32.6 ± 4 kg/m2) underwent CMR. We retrospectively quantified FT based strain and LA size and function at baseline and after a 6-month hypocaloric diet, with either low-carbohydrate or low-fat intake. The study cohort was compared to thirty-four healthy normal-weight controls (age 40.8 ± 16.0 years, BMI 22.5 ± 1.4 kg/m2). At baseline, the study cohort with overweight to obesity without established cardiovascular disease displayed significantly increased global circumferential strain (GCS), global radial strain (GRS) and LA size (all p < 0.0001 versus controls) but normal global longitudinal strain (GLS) and normal LA ejection fraction (all p > 0.05 versus controls). Dietary-induced weight loss led to a significant reduction in GCS, GRS and LA size irrespective of macronutrient composition (all p < 0.01). In a population with overweight to obesity without established cardiovascular disease subclinical myocardial changes can be detected applying CMR. After dietary-induced weight loss improvement of myocardial deformation could be shown. A potential clinical impact needs further studies.


Subject(s)
Cardiovascular Diseases , Humans , Adult , Middle Aged , Young Adult , Cardiovascular Diseases/diagnostic imaging , Cardiovascular Diseases/etiology , Overweight/complications , Retrospective Studies , Adiposity , Diet, Reducing , Ventricular Function, Left , Magnetic Resonance Imaging, Cine , Obesity/diagnosis , Obesity/diagnostic imaging , Predictive Value of Tests , Magnetic Resonance Spectroscopy , Weight Loss
8.
Magn Reson Med ; 91(5): 1994-2009, 2024 May.
Article in English | MEDLINE | ID: mdl-38174601

ABSTRACT

PURPOSE: Traditional phase-contrast MRI is affected by displacement artifacts caused by non-synchronized spatial- and velocity-encoding time points. The resulting inaccurate velocity maps can affect the accuracy of derived hemodynamic parameters. This study proposes and characterizes a 3D radial phase-contrast UTE (PC-UTE) sequence to reduce displacement artifacts. Furthermore, it investigates the displacement of a standard Cartesian flow sequence by utilizing a displacement-free synchronized-single-point-imaging MR sequence (SYNC-SPI) that requires clinically prohibitively long acquisition times. METHODS: 3D flow data was acquired at 3T at three different constant flow rates and varying spatial resolutions in a stenotic aorta phantom using the proposed PC-UTE, a Cartesian flow sequence, and a SYNC-SPI sequence as reference. Expected displacement artifacts were calculated from gradient timing waveforms and compared to displacement values measured in the in vitro flow experiments. RESULTS: The PC-UTE sequence reduces displacement and intravoxel dephasing, leading to decreased geometric distortions and signal cancellations in magnitude images, and more spatially accurate velocity quantification compared to the Cartesian flow acquisitions; errors increase with velocity and higher spatial resolution. CONCLUSION: PC-UTE MRI can measure velocity vector fields with greater accuracy than Cartesian acquisitions (although pulsatile fields were not studied) and shorter scan times than SYNC-SPI. As such, this approach is superior to traditional Cartesian 3D and 4D flow MRI when spatial misrepresentations cannot be tolerated, for example, when computational fluid dynamics simulations are compared to or combined with in vitro or in vivo measurements, or regional parameters such as wall shear stress are of interest.


Subject(s)
Aortic Valve Stenosis , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Hemodynamics , Phantoms, Imaging , Artifacts , Blood Flow Velocity , Imaging, Three-Dimensional/methods
9.
Eur Heart J Cardiovasc Imaging ; 25(4): e116-e136, 2024 03 27.
Article in English | MEDLINE | ID: mdl-38198766

ABSTRACT

Cardiovascular diseases (CVD) represent an important cause of mortality and morbidity in women. It is now recognized that there are sex differences regarding the prevalence and the clinical significance of the traditional cardiovascular (CV) risk factors as well as the pathology underlying a range of CVDs. Unfortunately, women have been under-represented in most CVD imaging studies and trials regarding diagnosis, prognosis, and therapeutics. There is therefore a clear need for further investigation of how CVD affects women along their life span. Multimodality CV imaging plays a key role in the diagnosis of CVD in women as well as in prognosis, decision-making, and monitoring of therapeutics and interventions. However, multimodality imaging in women requires specific consideration given the differences in CVD between the sexes. These differences relate to physiological changes that only women experience (e.g. pregnancy and menopause) as well as variation in the underlying pathophysiology of CVD and also differences in the prevalence of certain conditions such as connective tissue disorders, Takotsubo, and spontaneous coronary artery dissection, which are all more common in women. This scientific statement on CV multimodality in women, an initiative of the European Association of Cardiovascular Imaging of the European Society of Cardiology, reviews the role of multimodality CV imaging in the diagnosis, management, and risk stratification of CVD, as well as highlights important gaps in our knowledge that require further investigation.


Subject(s)
Cardiology , Cardiovascular Diseases , Female , Humans , Male , Cardiovascular Diseases/epidemiology , Multimodal Imaging , Societies, Medical , Risk Factors
10.
Int J Comput Assist Radiol Surg ; 19(3): 553-569, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37679657

ABSTRACT

PURPOSE: Numerical phantom methods are widely used in the development of medical imaging methods. They enable quantitative evaluation and direct comparison with controlled and known ground truth information. Cardiac magnetic resonance has the potential for a comprehensive evaluation of the mitral valve (MV). The goal of this work is the development of a numerical simulation framework that supports the investigation of MRI imaging strategies for the mitral valve. METHODS: We present a pipeline for synthetic image generation based on the combination of individual anatomical 3D models with a position-based dynamics simulation of the mitral valve closure. The corresponding images are generated using modality-specific intensity models and spatiotemporal sampling concepts. We test the applicability in the context of MRI imaging strategies for the assessment of the mitral valve. Synthetic images are generated with different strategies regarding image orientation (SAX and rLAX) and spatial sampling density. RESULTS: The suitability of the imaging strategy is evaluated by comparing MV segmentations against ground truth annotations. The generated synthetic images were compared to ones acquired with similar parameters, and the result is promising. The quantitative analysis of annotation results suggests that the rLAX sampling strategy is preferable for MV assessment, reaching accuracy values that are comparable to or even outperform literature values. CONCLUSION: The proposed approach provides a valuable tool for the evaluation and optimization of cardiac valve image acquisition. Its application to the use case identifies the radial image sampling strategy as the most suitable for MV assessment through MRI.


Subject(s)
Mitral Valve Insufficiency , Mitral Valve , Humans , Mitral Valve/diagnostic imaging , Computer Simulation , Mitral Valve Insufficiency/diagnostic imaging , Magnetic Resonance Imaging , Phantoms, Imaging
11.
Eur Radiol ; 34(2): 1003-1015, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37594523

ABSTRACT

OBJECTIVES: The analysis of myocardial deformation using feature tracking in cardiovascular MR allows for the assessment of global and segmental strain values. The aim of this study was to compare strain values derived from artificial intelligence (AI)-based contours with manually derived strain values in healthy volunteers and patients with cardiac pathologies. MATERIALS AND METHODS: A cohort of 136 subjects (60 healthy volunteers and 76 patients; of those including 46 cases with left ventricular hypertrophy (LVH) of varying etiology and 30 cases with chronic myocardial infarction) was analyzed. Comparisons were based on quantitative strain analysis and on a geometric level by the Dice similarity coefficient (DSC) of the segmentations. Strain quantification was performed in 3 long-axis slices and short-axis (SAX) stack with epi- and endocardial contours in end-diastole. AI contours were checked for plausibility and potential errors in the tracking algorithm. RESULTS: AI-derived strain values overestimated radial strain (+ 1.8 ± 1.7% (mean difference ± standard deviation); p = 0.03) and underestimated circumferential (- 0.8 ± 0.8%; p = 0.02) and longitudinal strain (- 0.1 ± 0.8%; p = 0.54). Pairwise group comparisons revealed no significant differences for global strain. The DSC showed good agreement for healthy volunteers (85.3 ± 10.3% for SAX) and patients (80.8 ± 9.6% for SAX). In 27 cases (27/76; 35.5%), a tracking error was found, predominantly (24/27; 88.9%) in the LVH group and 22 of those (22/27; 81.5%) at the insertion of the papillary muscle in lateral segments. CONCLUSIONS: Strain analysis based on AI-segmented images shows good results in healthy volunteers and in most of the patient groups. Hypertrophied ventricles remain a challenge for contouring and feature tracking. CLINICAL RELEVANCE STATEMENT: AI-based segmentations can help to streamline and standardize strain analysis by feature tracking. KEY POINTS: • Assessment of strain in cardiovascular magnetic resonance by feature tracking can generate global and segmental strain values. • Commercially available artificial intelligence algorithms provide segmentation for strain analysis comparable to manual segmentation. • Hypertrophied ventricles are challenging in regards of strain analysis by feature tracking.


Subject(s)
Artificial Intelligence , Magnetic Resonance Imaging, Cine , Humans , Magnetic Resonance Imaging, Cine/methods , Ventricular Function, Left/physiology , Heart , Myocardium/pathology , Heart Ventricles/diagnostic imaging , Hypertrophy, Left Ventricular/pathology , Reproducibility of Results
12.
Int J Cardiol ; 395: 131447, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37844667

ABSTRACT

Arrhythmogenic cardiomyopathy (ACM) is a heart muscle disease characterized by prominent "non-ischemic" myocardial scarring predisposing to ventricular electrical instability. Diagnostic criteria for the original phenotype, arrhythmogenic right ventricular cardiomyopathy (ARVC), were first proposed in 1994 and revised in 2010 by an international Task Force (TF). A 2019 International Expert report appraised these previous criteria, finding good accuracy for diagnosis of ARVC but a lack of sensitivity for identification of the expanding phenotypic disease spectrum, which includes left-sided variants, i.e., biventricular (ABVC) and arrhythmogenic left ventricular cardiomyopathy (ALVC). The ARVC phenotype together with these left-sided variants are now more appropriately named ACM. The lack of diagnostic criteria for the left ventricular (LV) phenotype has resulted in clinical under-recognition of ACM patients over the 4 decades since the disease discovery. In 2020, the "Padua criteria" were proposed for both right- and left-sided ACM phenotypes. The presently proposed criteria represent a refinement of the 2020 Padua criteria and have been developed by an expert European TF to improve the diagnosis of ACM with upgraded and internationally recognized criteria. The growing recognition of the diagnostic role of CMR has led to the incorporation of myocardial tissue characterization findings for detection of myocardial scar using the late­gadolinium enhancement (LGE) technique to more fully characterize right, biventricular and left disease variants, whether genetic or acquired (phenocopies), and to exclude other "non-scarring" myocardial disease. The "ring-like' pattern of myocardial LGE/scar is now a recognized diagnostic hallmark of ALVC. Additional diagnostic criteria regarding LV depolarization and repolarization ECG abnormalities and ventricular arrhythmias of LV origin are also provided. These proposed upgrading of diagnostic criteria represents a working framework to improve management of ACM patients.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia , Cardiomyopathies , Humans , Cicatrix , Consensus , Contrast Media , Gadolinium , Cardiomyopathies/diagnostic imaging , Arrhythmias, Cardiac/diagnosis
13.
Sci Rep ; 13(1): 22745, 2023 12 20.
Article in English | MEDLINE | ID: mdl-38123791

ABSTRACT

In magnetic resonance imaging (MRI), the perception of substandard image quality may prompt repetition of the respective image acquisition protocol. Subsequently selecting the preferred high-quality image data from a series of acquisitions can be challenging. An automated workflow may facilitate and improve this selection. We therefore aimed to investigate the applicability of an automated image quality assessment for the prediction of the subjectively preferred image acquisition. Our analysis included data from 11,347 participants with whole-body MRI examinations performed as part of the ongoing prospective multi-center German National Cohort (NAKO) study. Trained radiologic technologists repeated any of the twelve examination protocols due to induced setup errors and/or subjectively unsatisfactory image quality and chose a preferred acquisition from the resultant series. Up to 11 quantitative image quality parameters were automatically derived from all acquisitions. Regularized regression and standard estimates of diagnostic accuracy were calculated. Controlling for setup variations in 2342 series of two or more acquisitions, technologists preferred the repetition over the initial acquisition in 1116 of 1396 series in which the initial setup was retained (79.9%, range across protocols: 73-100%). Image quality parameters then commonly showed statistically significant differences between chosen and discarded acquisitions. In regularized regression across all protocols, 'structured noise maximum' was the strongest predictor for the technologists' choice, followed by 'N/2 ghosting average'. Combinations of the automatically derived parameters provided an area under the ROC curve between 0.51 and 0.74 for the prediction of the technologists' choice. It is concluded that automated image quality assessment can, despite considerable performance differences between protocols and anatomical regions, contribute substantially to identifying the subjective preference in a series of MRI acquisitions and thus provide effective decision support to readers.


Subject(s)
Magnetic Resonance Imaging , Humans , Cohort Studies , Prospective Studies , Magnetic Resonance Imaging/methods , ROC Curve , Longitudinal Studies
14.
J Am Coll Cardiol ; 82(19): 1828-1838, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37914512

ABSTRACT

BACKGROUND: GadaCAD2 was 1 of 2 international, multicenter, prospective, Phase 3 clinical trials that led to U.S. Food and Drug Administration approval of gadobutrol to assess myocardial perfusion and late gadolinium enhancement (LGE) in adults with known or suspected coronary artery disease (CAD). OBJECTIVES: A prespecified secondary objective was to determine if stress perfusion cardiovascular magnetic resonance (CMR) was noninferior to single-photon emission computed tomography (SPECT) for detecting significant CAD and for excluding significant CAD. METHODS: Participants with known or suspected CAD underwent a research rest and stress perfusion CMR that was compared with a gated SPECT performed using standard clinical protocols. For CMR, adenosine or regadenoson served as vasodilators. The total dose of gadobutrol was 0.1 mmol/kg body weight. The standard of reference was a 70% stenosis defined by quantitative coronary angiography (QCA). A negative coronary computed tomography angiography could exclude CAD. Analysis was per patient. CMR, SPECT, and QCA were evaluated by independent central core lab readers blinded to clinical information. RESULTS: Participants were predominantly male (61.4% male; mean age 58.9 ± 10.2 years) and were recruited from the United States (75.0%), Australia (14.7%), Singapore (5.7%), and Canada (4.6%). The prevalence of significant CAD was 24.5% (n = 72 of 294). Stress perfusion CMR was statistically superior to gated SPECT for specificity (P = 0.002), area under the receiver operating characteristic curve (P < 0.001), accuracy (P = 0.003), positive predictive value (P < 0.001), and negative predictive value (P = 0.041). The sensitivity of CMR for a 70% QCA stenosis was noninferior and nonsuperior to gated SPECT. CONCLUSIONS: Vasodilator stress perfusion CMR, as performed with gadobutrol 0.1 mmol/kg body weight, had superior diagnostic accuracy for diagnosis and exclusion of significant CAD vs gated SPECT.


Subject(s)
Coronary Artery Disease , Myocardial Perfusion Imaging , Adult , Aged , Female , Humans , Male , Middle Aged , Body Weight , Constriction, Pathologic , Contrast Media , Coronary Angiography/methods , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/pathology , Gadolinium , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy , Myocardial Perfusion Imaging/methods , Perfusion , Predictive Value of Tests , Prospective Studies , Tomography, Emission-Computed, Single-Photon/methods , Vasodilator Agents
15.
BMJ Open ; 13(10): e076415, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37907297

ABSTRACT

INTRODUCTION: The Berlin Long-term Observation of Vascular Events is a prospective cohort study that aims to improve prediction and disease-overarching mechanistic understanding of cardiovascular (CV) disease progression by comprehensively investigating a high-risk patient population with different organ manifestations. METHODS AND ANALYSIS: A total of 8000 adult patients will be recruited who have either suffered an acute CV event (CVE) requiring hospitalisation or who have not experienced a recent acute CVE but are at high CV risk. An initial study examination is performed during the acute treatment phase of the index CVE or after inclusion into the chronic high risk arm. Deep phenotyping is then performed after ~90 days and includes assessments of the patient's medical history, health status and behaviour, cardiovascular, nutritional, metabolic, and anthropometric parameters, and patient-related outcome measures. Biospecimens are collected for analyses including 'OMICs' technologies (e.g., genomics, metabolomics, proteomics). Subcohorts undergo MRI of the brain, heart, lung and kidney, as well as more comprehensive metabolic, neurological and CV examinations. All participants are followed up for up to 10 years to assess clinical outcomes, primarily major adverse CVEs and patient-reported (value-based) outcomes. State-of-the-art clinical research methods, as well as emerging techniques from systems medicine and artificial intelligence, will be used to identify associations between patient characteristics, longitudinal changes and outcomes. ETHICS AND DISSEMINATION: The study was approved by the Charité-Universitätsmedizin Berlin ethics committee (EA1/066/17). The results of the study will be disseminated through international peer-reviewed publications and congress presentations. STUDY REGISTRATION: First study phase: Approved WHO primary register: German Clinical Trials Register: https://drks.de/search/de/trial/DRKS00016852; WHO International Clinical Registry Platform: http://apps.who.int/trialsearch/Trial2.aspx?TrialID=DRKS00016852. Recruitment started on July 18, 2017.Second study phase: Approved WHO primary register: German Clinical Trials Register DRKS00023323, date of registration: November 4, 2020, URL: http://www.drks.de/ DRKS00023323. Recruitment started on January 1, 2021.


Subject(s)
COVID-19 , Cardiovascular Diseases , Adult , Humans , SARS-CoV-2 , Berlin , Prospective Studies , Artificial Intelligence , Follow-Up Studies , Lung
16.
J Cardiovasc Magn Reson ; 25(1): 47, 2023 08 14.
Article in English | MEDLINE | ID: mdl-37574535

ABSTRACT

BACKGROUND: Parametric mapping sequences in cardiovascular magnetic resonance (CMR) allow for non-invasive myocardial tissue characterization. However quantitative myocardial mapping is still limited by the need for local reference values. Confounders, such as field strength, vendors and sequences, make intersite comparisons challenging. This exploratory study aims to assess whether multi-site studies that control confounding factors provide first insights whether parametric mapping values are within pre-defined tolerance ranges across scanners and sites. METHODS: A cohort of 20 healthy travelling volunteers was prospectively scanned at three sites with a 3 T scanner from the same vendor using the same scanning protocol and acquisition scheme. A Modified Look-Locker inversion recovery sequence (MOLLI) for T1 and a fast low-angle shot sequence (FLASH) for T2 were used. At one site a scan-rescan was performed to assess the intra-scanner reproducibility. All acquired T1- and T2-mappings were analyzed in a core laboratory using the same post-processing approach and software. RESULTS: After exclusion of one volunteer due to an accidentally diagnosed cardiac disease, T1- and T2-maps of 19 volunteers showed no significant differences between the 3 T sites (mean ± SD [95% confidence interval] for global T1 in ms: site I: 1207 ± 32 [1192-1222]; site II: 1207 ± 40 [1184-1225]; site III: 1219 ± 26 [1207-1232]; p = 0.067; for global T2 in ms: site I: 40 ± 2 [39-41]; site II: 40 ± 1 [39-41]; site III 39 ± 2 [39-41]; p = 0.543). CONCLUSION: Parametric mapping results displayed initial hints at a sufficient similarity between sites when confounders, such as field strength, vendor diversity, acquisition schemes and post-processing analysis are harmonized. This finding needs to be confirmed in a powered clinical trial. Trial registration ISRCTN14627679 (retrospectively registered).


Subject(s)
Magnetic Resonance Imaging , Volunteers , Humans , Berlin , Reproducibility of Results , Predictive Value of Tests , Healthy Volunteers , Magnetic Resonance Spectroscopy
17.
Eur Heart J ; 44(45): 4771-4780, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37622660

ABSTRACT

Imaging plays an integral role in all aspects of managing heart disease and cardiac imaging is a core competency of cardiologists. The adequate delivery of cardiac imaging services requires expertise in both imaging methodology-with specific adaptations to imaging of the heart-as well as intricate knowledge of heart disease. The European Society of Cardiology (ESC) and the European Association of Cardiovascular Imaging have developed and implemented a successful education and certification programme for all cardiac imaging modalities. This programme equips cardiologists to provide high quality competency-based cardiac imaging services ensuring they are adequately trained and competent in the entire process of cardiac imaging, from the clinical indication via selecting the best imaging test to answer the clinical question, to image acquisition, analysis, interpretation, storage, repository, and results dissemination. This statement emphasizes the need for competency-based cardiac imaging delivery which is key to optimal, effective and efficient, patient care.


Subject(s)
Cardiology , Cardiovascular Nursing , Heart Diseases , Heart Failure , Humans , Heart
18.
Eur Heart J Cardiovasc Imaging ; 24(11): 1415-1424, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37622662

ABSTRACT

Imaging plays an integral role in all aspects of managing heart disease and cardiac imaging is a core competency of cardiologists. The adequate delivery of cardiac imaging services requires expertise in both imaging methodology-with specific adaptations to imaging of the heart-as well as intricate knowledge of heart disease. The European Society of Cardiology (ESC) and the European Association of Cardiovascular Imaging have developed and implemented a successful education and certification programme for all cardiac imaging modalities. This programme equips cardiologists to provide high quality competency-based cardiac imaging services ensuring they are adequately trained and competent in the entire process of cardiac imaging, from the clinical indication via selecting the best imaging test to answer the clinical question, to image acquisition, analysis, interpretation, storage, repository, and results dissemination. This statement emphasizes the need for competency-based cardiac imaging delivery which is key to optimal, effective and efficient, patient care.


Subject(s)
Cardiology , Cardiovascular Nursing , Heart Diseases , Heart Failure , Humans , Heart
19.
J Cardiovasc Magn Reson ; 25(1): 38, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37394485

ABSTRACT

INTRODUCTION: The use of cardiovascular magnetic resonance (CMR) for diagnosis and management of a broad range of cardiac and vascular conditions has quickly expanded worldwide. It is essential to understand how CMR is utilized in different regions around the world and the potential practice differences between high-volume and low-volume centers. METHODS: CMR practitioners and developers from around the world were electronically surveyed by the Society for Cardiovascular Magnetic Resonance (SCMR) twice, requesting data from 2017. Both surveys were carefully merged, and the data were curated professionally by a data expert using cross-references in key questions and the specific media access control IP address. According to the United Nations classification, responses were analyzed by region and country and interpreted in the context of practice volumes and demography. RESULTS: From 70 countries and regions, 1092 individual responses were included. CMR was performed more often in academic (695/1014, 69%) and hospital settings (522/606, 86%), with adult cardiologists being the primary referring providers (680/818, 83%). Evaluation of cardiomyopathy was the top indication in high-volume and low-volume centers (p = 0.06). High-volume centers were significantly more likely to list evaluation of ischemic heart disease (e.g., stress CMR) as a primary indicator compared to low-volume centers (p < 0.001), while viability assessment was more commonly listed as a primary referral reason in low-volume centers (p = 0.001). Both developed and developing countries noted cost and competing technologies as top barriers to CMR growth. Access to scanners was listed as the most common barrier in developed countries (30% of responders), while lack of training (22% of responders) was the most common barrier in developing countries. CONCLUSION: This is the most extensive global assessment of CMR practice to date and provides insights from different regions worldwide. We identified CMR as heavily hospital-based, with referral volumes driven primarily by adult cardiology. Indications for CMR utilization varied by center volume. Efforts to improve the adoption and utilization of CMR should include growth beyond the traditional academic, hospital-based location and an emphasis on cardiomyopathy and viability assessment in community centers.


Subject(s)
Cardiology , Cardiomyopathies , Adult , Humans , Predictive Value of Tests , Magnetic Resonance Imaging , Cardiology/education , Magnetic Resonance Spectroscopy
20.
J Cardiovasc Magn Reson ; 25(1): 42, 2023 07 24.
Article in English | MEDLINE | ID: mdl-37482604

ABSTRACT

BACKGROUND: Cardiovascular magnetic resonance (CMR) has been established as a valuable tool in clinical and scientific cardiology. This study summarizes the current evidence and role of CMR in the guidelines of the European Society of Cardiology (ESC) and is an update of a former guideline analysis. METHODS: Since the last guideline analysis performed in 2015, 28 new ESC guideline documents have been published. Twenty-seven ESC practice guidelines are currently in use. They were screened regarding CMR in the text, tables and figures. The main CMR-related sentences and recommendations were extracted. RESULTS: Nineteen of the 27 guidelines (70.4%) contain relevant text passages regarding CMR in the text and include 92 specific recommendations regarding the use of CMR. Seven guidelines (25.9%) mention CMR in the text, and 1 (3.7%, dyslipidemia) does not mention CMR. The 19 guidelines with recommendations regarding the use of CMR contain 40 class-I recommendations (43.5%), 28 class-IIa recommendations (30.4%), 19 class-IIb recommendations (20.7%) and 5 class-III recommendations (5.4%). Most of the recommendations have evidence level C (56/92; 60.9%), followed by level B (34/92; 37.0%) and level A (2/92; 2.2%). Twenty-one recommendations refer to the field of cardiomyopathies, 21 recommendations to stress perfusion imaging, 20 recommendations to vascular assessment, 12 to myocardial tissue characterization in general, 8 to left and right ventricular function assessment, 5 to the pericardium and 5 to myocarditis. CONCLUSIONS: CMR is integral part of the majority of the ESC guidelines. Its representation in the guidelines has increased since the last analysis from 2015, now comprising 92 instead of formerly 63 specific recommendations. To enable patient management in accordance to the ESC guidelines, CMR must become more widely available.


Subject(s)
Cardiology , Humans , Predictive Value of Tests , Magnetic Resonance Imaging/methods , Heart , Magnetic Resonance Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...