Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
Add more filters










Publication year range
1.
Plant J ; 118(2): 584-600, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38141174

ABSTRACT

Phenotyping of model organisms grown on Petri plates is often carried out manually, despite the procedures being time-consuming and laborious. The main reason for this is the limited availability of automated phenotyping facilities, whereas constructing a custom automated solution can be a daunting task for biologists. Here, we describe SPIRO, the Smart Plate Imaging Robot, an automated platform that acquires time-lapse photographs of up to four vertically oriented Petri plates in a single experiment, corresponding to 192 seedlings for a typical root growth assay and up to 2500 seeds for a germination assay. SPIRO is catered specifically to biologists' needs, requiring no engineering or programming expertise for assembly and operation. Its small footprint is optimized for standard incubators, the inbuilt green LED enables imaging under dark conditions, and remote control provides access to the data without interfering with sample growth. SPIRO's excellent image quality is suitable for automated image processing, which we demonstrate on the example of seed germination and root growth assays. Furthermore, the robot can be easily customized for specific uses, as all information about SPIRO is released under open-source licenses. Importantly, uninterrupted imaging allows considerably more precise assessment of seed germination parameters and root growth rates compared with manual assays. Moreover, SPIRO enables previously technically challenging assays such as phenotyping in the dark. We illustrate the benefits of SPIRO in proof-of-concept experiments which yielded a novel insight on the interplay between autophagy, nitrogen sensing, and photoblastic response.


Subject(s)
Germination , Seedlings , Phenotype , Germination/physiology , Seeds , Image Processing, Computer-Assisted
3.
Int J Mol Sci ; 24(4)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36834961

ABSTRACT

Plants have evolved elaborate mechanisms to sense, respond to and overcome the detrimental effects of high soil salinity. The role of calcium transients in salinity stress signaling is well established, but the physiological significance of concurrent salinity-induced changes in cytosolic pH remains largely undefined. Here, we analyzed the response of Arabidopsis roots expressing the genetically encoded ratiometric pH-sensor pHGFP fused to marker proteins for the recruitment of the sensor to the cytosolic side of the tonoplast (pHGFP-VTI11) and the plasma membrane (pHGFP-LTI6b). Salinity elicited a rapid alkalinization of cytosolic pH (pHcyt) in the meristematic and elongation zone of wild-type roots. The pH-shift near the plasma membrane preceded that at the tonoplast. In pH-maps transversal to the root axis, the epidermis and cortex had cells with a more alkaline pHcyt relative to cells in the stele in control conditions. Conversely, seedlings treated with 100 mM NaCl exhibited an increased pHcyt in cells of the vasculature relative to the external layers of the root, and this response occurred in both reporter lines. These pHcyt changes were substantially reduced in mutant roots lacking a functional SOS3/CBL4 protein, suggesting that the operation of the SOS pathway mediated the dynamics of pHcyt in response to salinity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Plant Roots , Salinity , Signal Transduction , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Cell Membrane/metabolism , Cell Membrane/physiology , Plant Roots/metabolism , Plant Roots/physiology , Sodium Chloride/pharmacology , Signal Transduction/physiology
4.
Elife ; 112022 09 07.
Article in English | MEDLINE | ID: mdl-36069528

ABSTRACT

Brassinosteroids (BR) are key hormonal regulators of plant development. However, whereas the individual components of BR perception and signaling are well characterized experimentally, the question of how they can act and whether they are sufficient to carry out the critical function of cellular elongation remains open. Here, we combined computational modeling with quantitative cell physiology to understand the dynamics of the plasma membrane (PM)-localized BR response pathway during the initiation of cellular responses in the epidermis of the Arabidopsis root tip that are be linked to cell elongation. The model, consisting of ordinary differential equations, comprises the BR-induced hyperpolarization of the PM, the acidification of the apoplast and subsequent cell wall swelling. We demonstrate that the competence of the root epidermal cells for the BR response predominantly depends on the amount and activity of H+-ATPases in the PM. The model further predicts that an influx of cations is required to compensate for the shift of positive charges caused by the apoplastic acidification. A potassium channel was subsequently identified and experimentally characterized, fulfilling this function. Thus, we established the landscape of components and parameters for physiological processes potentially linked to cell elongation, a central process in plant development.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Brassinosteroids/metabolism , Computer Simulation , Gene Expression Regulation, Plant , Plant Roots , Potassium Channels/metabolism , Proton-Translocating ATPases/metabolism , Signal Transduction
5.
Structure ; 30(10): 1403-1410.e4, 2022 10 06.
Article in English | MEDLINE | ID: mdl-36041457

ABSTRACT

We used the Legionella pneumophila effector SidK to affinity purify the endogenous vacuolar-type ATPases (V-ATPases) from lemon fruit. The preparation was sufficient for cryoelectron microscopy, allowing structure determination of the enzyme in two rotational states. The structure defines the ATP:H+ ratio of the enzyme, demonstrating that it can establish a maximum ΔpH of ∼3, which is insufficient to maintain the low pH observed in the vacuoles of juice sac cells in lemons and other citrus fruit. Compared with yeast and mammalian enzymes, the membrane region of the plant V-ATPase lacks subunit f and possesses an unusual configuration of transmembrane α helices. Subunit H, which inhibits ATP hydrolysis in the isolated catalytic region of V-ATPase, adopts two different conformations in the intact complex, hinting at a role in modulating activity in the intact enzyme.


Subject(s)
Citrus , Vacuolar Proton-Translocating ATPases , Adenosine Triphosphate , Animals , Cryoelectron Microscopy , Mammals/metabolism , Saccharomyces cerevisiae/metabolism , Vacuolar Proton-Translocating ATPases/chemistry , Vacuolar Proton-Translocating ATPases/metabolism , Vacuoles/metabolism
6.
J Exp Bot ; 73(8): 2308-2319, 2022 04 18.
Article in English | MEDLINE | ID: mdl-35085386

ABSTRACT

Much of what we know about the role of auxin in plant development derives from exogenous manipulations of auxin distribution and signaling, using inhibitors, auxins, and auxin analogs. In this context, synthetic auxin analogs, such as 1-naphthalene acetic acid (1-NAA), are often favored over the endogenous auxin, indole-3-acetic acid (IAA), in part due to their higher stability. While such auxin analogs have proven instrumental in revealing the various faces of auxin, they display in some cases bioactivities distinct from IAA. Here, we focused on the effect of auxin analogs on the accumulation of PIN proteins in brefeldin A-sensitive endosomal aggregations (BFA bodies), and correlation with the ability to elicit Ca2+ responses. For a set of commonly used auxin analogs, we evaluated if auxin analog-induced Ca2+ signaling inhibits PIN accumulation. Not all auxin analogs elicited a Ca2+ response, and their differential ability to elicit Ca2+ responses correlated partially with their ability to inhibit BFA-body formation. However, in tir1/afb and cngc14, 1-NAA-induced Ca2+ signaling was strongly impaired, yet 1-NAA still could inhibit PIN accumulation in BFA bodies. This demonstrates that TIR1/AFB-CNGC14-dependent Ca2+ signaling does not inhibit BFA body formation in Arabidopsis roots.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Calcium/metabolism , Indoleacetic Acids/metabolism , Plant Growth Regulators/metabolism , Plant Roots/metabolism
7.
Front Plant Sci ; 12: 691124, 2021.
Article in English | MEDLINE | ID: mdl-34630451

ABSTRACT

The Salt-Overly-Sensitive (SOS) pathway controls the net uptake of sodium by roots and the xylematic transfer to shoots in vascular plants. SOS3/CBL4 is a core component of the SOS pathway that senses calcium signaling of salinity stress to activate and recruit the protein kinase SOS2/CIPK24 to the plasma membrane to trigger sodium efflux by the Na/H exchanger SOS1/NHX7. However, despite the well-established function of SOS3 at the plasma membrane, SOS3 displays a nucleo-cytoplasmic distribution whose physiological meaning is not understood. Here, we show that the N-terminal part of SOS3 encodes structural information for dual acylation with myristic and palmitic fatty acids, each of which commands a different location and function of SOS3. N-myristoylation at glycine-2 is essential for plasma membrane association and recruiting SOS2 to activate SOS1, whereas S-acylation at cysteine-3 redirects SOS3 toward the nucleus. Moreover, a poly-lysine track in positions 7-11 that is unique to SOS3 among other Arabidopsis CBLs appears to be essential for the correct positioning of the SOS2-SOS3 complex at the plasma membrane for the activation of SOS1. The nuclear-localized SOS3 protein had limited bearing on the salt tolerance of Arabidopsis. These results are evidence of a novel S-acylation dependent nuclear trafficking mechanism that contrasts with alternative subcellular targeting of other CBLs by S-acylation.

8.
J Cell Sci ; 134(20)2021 10 15.
Article in English | MEDLINE | ID: mdl-34528690

ABSTRACT

The trans-Golgi network/early endosome (TGN/EE) serves as the central hub in which exocytic and endocytic trafficking pathways converge and specificity of cargo routing needs to be achieved. Acidification is a hallmark of the TGN/EE and is maintained by the vacuolar H+-ATPase (V-ATPase) with support of proton-coupled antiporters. We show here that ClCd and ClCf, two distantly related members of the Arabidopsis Cl- channel (ClC) family, colocalize in the TGN/EE, where they act redundantly, and are essential for male gametophyte development. Combining an inducible knockdown approach and in vivo pH measurements, we show here that reduced ClC activity does not affect pH in the TGN/EE but causes hyperacidification of trans-Golgi cisternae. Taken together, our results show that ClC-mediated anion transport into the TGN/EE is essential and affects spatiotemporal aspects of TGN/EE maturation as well as its functional separation from the Golgi stack.


Subject(s)
Arabidopsis Proteins , trans-Golgi Network , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Endosomes/metabolism , Fluoresceins , Hydrogen-Ion Concentration , Protein Transport , trans-Golgi Network/metabolism
9.
Plant J ; 106(6): 1541-1556, 2021 06.
Article in English | MEDLINE | ID: mdl-33780094

ABSTRACT

The acidification of plant vacuoles is of great importance for various physiological processes, as a multitude of secondary active transporters utilize the proton gradient established across the vacuolar membrane. Vacuolar-type H+ -translocating ATPases and a pyrophosphatase are thought to enable vacuoles to accumulate protons against their electrochemical potential. However, recent studies pointed to the ATPase located at the trans-Golgi network/early endosome (TGN/EE) to contribute to vacuolar acidification in a manner not understood as of now. Here, we combined experimental data and computational modeling to test different hypotheses for vacuolar acidification mechanisms. For this, we analyzed different models with respect to their ability to describe existing experimental data. To better differentiate between alternative acidification mechanisms, new experimental data have been generated. By fitting the models to the experimental data, we were able to prioritize the hypothesis in which vesicular trafficking of Ca2+ /H+ -antiporters from the TGN/EE to the vacuolar membrane and the activity of ATP-dependent Ca2+ -pumps at the tonoplast might explain the residual acidification observed in Arabidopsis mutants defective in vacuolar proton pump activity. The presented modeling approach provides an integrative perspective on vacuolar pH regulation in Arabidopsis and holds potential to guide further experimental work.


Subject(s)
Arabidopsis/metabolism , Computer Simulation , Homeostasis/physiology , Models, Biological , Vacuoles/metabolism , Antiporters/genetics , Antiporters/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Biological Transport/physiology , Calcium , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Endosomes/genetics , Endosomes/metabolism , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Plant/drug effects , Hydrogen-Ion Concentration , Macrolides/pharmacology , Mutation , Plant Roots/drug effects , Plant Roots/metabolism , Vacuolar Proton-Translocating ATPases/genetics , Vacuolar Proton-Translocating ATPases/metabolism , trans-Golgi Network/physiology
10.
Elife ; 92020 11 25.
Article in English | MEDLINE | ID: mdl-33236982

ABSTRACT

The V-ATPase is a versatile proton-pump found in a range of endomembrane compartments yet the mechanisms governing its differential targeting remain to be determined. In Arabidopsis, VHA-a1 targets the V-ATPase to the TGN/EE whereas VHA-a2 and VHA-a3 are localized to the tonoplast. We report here that the VHA-a1 targeting domain serves as both an ER-exit and as a TGN/EE-retention motif and is conserved among seed plants. In contrast, Marchantia encodes a single VHA-isoform that localizes to the TGN/EE and the tonoplast in Arabidopsis. Analysis of CRISPR/Cas9 generated null alleles revealed that VHA-a1 has an essential function for male gametophyte development but acts redundantly with the tonoplast isoforms during vegetative growth. We propose that in the absence of VHA-a1, VHA-a3 is partially re-routed to the TGN/EE. Our findings contribute to understanding the evolutionary origin of V-ATPase targeting and provide a striking example that differential localization does not preclude functional redundancy.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/enzymology , Arabidopsis/genetics , Gene Expression Regulation, Enzymologic/physiology , Gene Expression Regulation, Plant/physiology , Vacuolar Proton-Translocating ATPases/genetics , CRISPR-Cas Systems , Genotype , Mutagenesis, Site-Directed , Phylogeny , Plant Roots/enzymology , Pollen , Seeds
11.
Plant Cell ; 32(8): 2582-2601, 2020 08.
Article in English | MEDLINE | ID: mdl-32471862

ABSTRACT

Deciphering signal transduction processes is crucial for understanding how plants sense and respond to environmental changes. Various chemical compounds function as central messengers within deeply intertwined signaling networks. How such compounds act in concert remains to be elucidated. We have developed dual-reporting transcriptionally linked genetically encoded fluorescent indicators (2-in-1-GEFIs) for multiparametric in vivo analyses of the phytohormone abscisic acid (ABA), Ca2+, protons (H+), chloride (anions), the glutathione redox potential, and H2O2 Simultaneous analyses of two signaling compounds in Arabidopsis (Arabidopsis thaliana) roots revealed that ABA treatment and uptake did not trigger rapid cytosolic Ca2+ or H+ dynamics. Glutamate, ATP, Arabidopsis PLANT ELICITOR PEPTIDE, and glutathione disulfide (GSSG) treatments induced rapid spatiotemporally overlapping cytosolic Ca2+, H+, and anion dynamics, but except for GSSG, only weakly affected the cytosolic redox state. Overall, 2-in-1-GEFIs enable complementary, high-resolution in vivo analyses of signaling compound dynamics and facilitate an advanced understanding of the spatiotemporal coordination of signal transduction processes in Arabidopsis.


Subject(s)
Abscisic Acid/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Cytosol/metabolism , Fluorescent Dyes/metabolism , Second Messenger Systems , Transcription, Genetic , Adenosine Triphosphate/pharmacology , Arabidopsis/drug effects , Arabidopsis Proteins/metabolism , Calcium/metabolism , Chlorides/metabolism , Cytosol/drug effects , Fluorescence Resonance Energy Transfer , Glutamic Acid/pharmacology , Glutathione Disulfide/pharmacology , Hydrogen/metabolism , Hydrogen Peroxide/toxicity , Hydrogen-Ion Concentration , Indoleacetic Acids/pharmacology , Oxidation-Reduction , Plant Roots/drug effects , Plant Roots/metabolism , Transcription, Genetic/drug effects
12.
Elife ; 92020 04 16.
Article in English | MEDLINE | ID: mdl-32297855

ABSTRACT

Post-translationally modified peptides are involved in many aspects of plant growth and development. The maturation of these peptides from their larger precursors is still poorly understood. We show here that the biogenesis of CLEL6 and CLEL9 peptides in Arabidopsis thaliana requires a series of processing events in consecutive compartments of the secretory pathway. Following cleavage of the signal peptide upon entry into the endoplasmic reticulum (ER), the peptide precursors are processed in the cis-Golgi by the subtilase SBT6.1. SBT6.1-mediated cleavage within the variable domain allows for continued passage of the partially processed precursors through the secretory pathway, and for subsequent post-translational modifications including tyrosine sulfation and proline hydroxylation within, and proteolytic maturation after exit from the Golgi. Activation by subtilases including SBT3.8 in post-Golgi compartments depends on the N-terminal aspartate of the mature peptides. Our work highlights the complexity of post-translational precursor maturation allowing for stringent control of peptide biogenesis.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Protein Processing, Post-Translational/physiology , Secretory Pathway/physiology
13.
Plant Physiol ; 182(3): 1310-1325, 2020 03.
Article in English | MEDLINE | ID: mdl-31862838

ABSTRACT

Allantoin is a purine oxidative product involved in long distance transport of organic nitrogen in nodulating legumes and was recently shown to play a role in stress tolerance in other plants. The subcellular localization of enzymes that catalyze allantoin synthesis and degradation indicates that allantoin is produced in peroxisomes and degraded in the endoplasmic reticulum (ER). Although it has been determined that allantoin is mostly synthesized in roots and transported to shoots either for organic nitrogen translocation in legumes or for plant protection during stress in Arabidopsis (Arabidopsis thaliana), the mechanism and molecular components of allantoin export from root cells are still unknown. AtUPS5 (Arabidopsis UREIDE PERMEASE 5) is a transmembrane protein that transports allantoin with high affinity when expressed in yeast. The subcellular fate of splicing variants AtUPS5L (long) and AtUPS5S (short) was studied by tagging them with fluorescent proteins in their cytosolic loops. The capability of these fusion proteins to complement the function of the native proteins was demonstrated by nutritional and salt stress experiments. Both variants localized to the ER, but the AtUPS5L variant was also detected in the trans-Golgi network/early endosome and at the plasma membrane. AtUPS5L and AtUPS5S localization indicates that they could have different roles in allantoin distribution between subcellular compartments. Our data suggest that under nonstress conditions UPS5L and UPS5S may function in allantoin degradation for nutrient recycling, whereas under stress, both genes may be involved in vesicular export allowing allantoin translocation from roots to shoots.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Membrane Transport Proteins/metabolism , Plant Roots/metabolism , Allantoin/metabolism , Gene Expression Regulation, Plant , Nitrogen/metabolism
14.
EMBO J ; 38(24): e101822, 2019 12 16.
Article in English | MEDLINE | ID: mdl-31736111

ABSTRACT

Environmental adaptation of organisms relies on fast perception and response to external signals, which lead to developmental changes. Plant cell growth is strongly dependent on cell wall remodeling. However, little is known about cell wall-related sensing of biotic stimuli and the downstream mechanisms that coordinate growth and defense responses. We generated genetically encoded pH sensors to determine absolute pH changes across the plasma membrane in response to biotic stress. A rapid apoplastic acidification by phosphorylation-based proton pump activation in response to the fungus Fusarium oxysporum immediately reduced cellulose synthesis and cell growth and, furthermore, had a direct influence on the pathogenicity of the fungus. In addition, pH seems to influence cellulose structure. All these effects were dependent on the COMPANION OF CELLULOSE SYNTHASE proteins that are thus at the nexus of plant growth and defense. Hence, our discoveries show a remarkable connection between plant biomass production, immunity, and pH control, and advance our ability to investigate the plant growth-defense balance.


Subject(s)
Arabidopsis/immunology , Defense Mechanisms , Hydrogen-Ion Concentration , Plant Development/immunology , Plant Diseases/immunology , Plant Immunity/physiology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cell Membrane/metabolism , Cell Wall , Cellulose/metabolism , Fusariosis , Fusarium/pathogenicity , Glucosyltransferases , Microtubule-Associated Proteins/genetics , Plant Development/genetics , Plant Development/physiology , Plant Diseases/microbiology , Plant Immunity/genetics , Plant Roots/genetics , Plant Roots/physiology , Stress, Physiological
15.
Plant J ; 99(5): 910-923, 2019 09.
Article in English | MEDLINE | ID: mdl-31033043

ABSTRACT

Calcium gradients underlie polarization in eukaryotic cells. In plants, a tip-focused Ca2+ -gradient is fundamental for rapid and unidirectional cell expansion during epidermal root hair development. Here we report that three members of the cyclic nucleotide-gated channel family are required to maintain cytosolic Ca2+ oscillations and the normal growth of root hairs. CNGC6, CNGC9 and CNGC14 were expressed in root hairs, with CNGC9 displaying the highest root hair specificity. In individual channel mutants, morphological defects including root hair swelling and branching, as well as bursting, were observed. The developmental phenotypes were amplified in the three cngc double mutant combinations. Finally, cngc6/9/14 triple mutants only developed bulging trichoblasts and could not form normal root hair protrusions because they burst after the transition to the rapid growth phase. Prior to developmental defects, single and double mutants showed increasingly disturbed patterns of Ca2+ oscillations. We conclude that CNGC6, CNGC9 and CNGC14 fulfill partially but not fully redundant functions in generating and maintaining tip-focused Ca2+ oscillations, which are fundamental for proper root hair growth and polarity. Furthermore, the results suggest that these calmodulin-binding and Ca2+ -permeable channels organize a robust tip-focused oscillatory calcium gradient, which is not essential for root hair initiation but is required to control the integrity of the root hair after the transition to the rapid growth phase. Our findings also show that root hairs possess a large ability to compensate calcium-signaling defects, and add new players to the regulatory network, which coordinates cell wall properties and cell expansion during polar root hair growth.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Calcium Signaling/physiology , Cyclic Nucleotide-Gated Cation Channels/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Calcium/metabolism , Calcium Channels/metabolism , Cell Wall/metabolism , Cyclic Nucleotide-Gated Cation Channels/genetics , Cytosol/metabolism , Mutation , Plant Roots/cytology , Plant Roots/genetics , Plants, Genetically Modified , Nicotiana
16.
J Cell Sci ; 132(7)2019 04 08.
Article in English | MEDLINE | ID: mdl-30837286

ABSTRACT

The regulation of ion and pH homeostasis of endomembrane organelles is critical for functional protein trafficking, sorting and modification in eukaryotic cells. pH homeostasis is maintained through the activity of vacuolar H+-ATPases (V-ATPases) pumping protons (H+) into the endomembrane lumen, and counter-action by cation/proton exchangers, such as the NHX family of Na+(K+)/H+ exchangers. In plants, V-ATPase activity at the trans-Golgi network/early endosome (TGN/EE) is important for secretory and endocytic trafficking; however, the role of the endosomal antiporters NHX5 and NHX6 in endomembrane trafficking is unclear. Here we show through genetic, pharmacological and live-cell imaging approaches that double knockout of NHX5 and NHX6 results in the impairment of endosome motility and protein recycling at the TGN/EE, but not in the secretion of integral membrane proteins. Furthermore, we report that nhx5 nhx6 mutants are partially insensitive to osmotic swelling of TGN/EE induced by the monovalent cation ionophore monensin, and to late endosomal swelling by the phosphatidylinositol 3/4-kinase inhibitor wortmannin, demonstrating that NHX5 and NHX6 function to regulate the luminal cation composition of endosomes.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Endosomes/metabolism , Sodium-Hydrogen Exchangers/metabolism , Arabidopsis/metabolism , Gene Expression Regulation, Plant , Gene Knockout Techniques , Homeostasis , Ions/metabolism , Protein Transport , Vacuoles/metabolism , trans-Golgi Network/metabolism
18.
Elife ; 82019 02 20.
Article in English | MEDLINE | ID: mdl-30785397

ABSTRACT

Pyrophosphate (PPi), a byproduct of macromolecule biosynthesis is maintained at low levels by soluble inorganic pyrophosphatases (sPPase) found in all eukaryotes. In plants, H+-pumping pyrophosphatases (H+-PPase) convert the substantial energy present in PPi into an electrochemical gradient. We show here, that both cold- and heat stress sensitivity of fugu5 mutants lacking the major H+-PPase isoform AVP1 is correlated with reduced SUMOylation. In addition, we show that increased PPi concentrations interfere with SUMOylation in yeast and we provide evidence that SUMO activating E1-enzymes are inhibited by micromolar concentrations of PPi in a non-competitive manner. Taken together, our results do not only provide a mechanistic explanation for the beneficial effects of AVP1 overexpression in plants but they also highlight PPi as an important integrator of metabolism and stress tolerance.


Subject(s)
Arabidopsis/physiology , Diphosphates/metabolism , Stress, Physiological , Sumoylation , Acclimatization , Arabidopsis/enzymology , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Cold Temperature , Hot Temperature , Inorganic Pyrophosphatase/metabolism , Isoenzymes/metabolism
19.
Nat Plants ; 5(2): 204-211, 2019 02.
Article in English | MEDLINE | ID: mdl-30737514

ABSTRACT

During establishment of arbuscular mycorrhizal symbioses, fungal hyphae invade root cells producing transient tree-like structures, the arbuscules, where exchange of photosynthates for soil minerals occurs. Arbuscule formation and collapse lead to rapid production and degradation of plant and fungal membranes, their spatiotemporal dynamics directly influencing nutrient exchange. We determined the ultra-structural details of both membrane surfaces and the interstitial apoplastic matrix by transmission electron microscopy tomography during growth and senescence of Rhizophagus irregularis arbuscules in rice. Invasive growth of arbuscular hyphae was associated with abundant fungal membrane tubules (memtubs) and plant peri-arbuscular membrane evaginations. Similarly, the phylogenetically distant arbuscular mycorrhizal fungus, Gigaspora rosea, and the fungal maize pathogen, Ustilago maydis, developed memtubs while invading host cells, revealing structural commonalities independent of the mutualistic or parasitic outcome of the interaction. Additionally, extracellular vesicles formed continuously in the peri-arbuscular interface from arbuscule biogenesis to senescence, suggesting an involvement in inter-organismic signal and nutrient exchange throughout the arbuscule lifespan.


Subject(s)
Cell Membrane/ultrastructure , Extracellular Vesicles/metabolism , Mycorrhizae/physiology , Oryza/microbiology , Plant Cells/microbiology , Cell Membrane/microbiology , Electron Microscope Tomography , Glomeromycota/physiology , Hyphae/physiology , Mycorrhizae/cytology , Oryza/cytology , Oryza/genetics , Plant Leaves/cytology , Plant Leaves/microbiology , Plant Leaves/ultrastructure , Plant Roots/cytology , Plant Roots/microbiology , Plant Roots/ultrastructure , Plants, Genetically Modified , Symbiosis , Ustilago/pathogenicity , Zea mays/microbiology
20.
J Autism Dev Disord ; 49(7): 2795-2809, 2019 Jul.
Article in English | MEDLINE | ID: mdl-28936692

ABSTRACT

This study examined whether the therapeutic relationship in music therapy with children with Autism Spectrum Disorder predicts generalized changes in social skills. Participants (4-7 years, N = 48) were assessed at baseline, 5 and 12 months. The therapeutic relationship, as observed from session videos, and the generalized change in social skills, as judged by independent blinded assessors and parents, were evaluated using standardized tools (Assessment of the Quality of Relationship; ADOS; SRS). Linear mixed effect models showed significant interaction effects between the therapeutic relationship and several outcomes at 5 and 12 months. We found the music therapeutic relationship to be an important predictor of the development of social skills, as well as communication and language specifically.


Subject(s)
Autism Spectrum Disorder/therapy , Music Therapy , Social Skills , Child , Child, Preschool , Communication , Female , Humans , Language , Male , Music , Parents
SELECTION OF CITATIONS
SEARCH DETAIL
...