Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 188
Filter
1.
Blood Adv ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38593233

ABSTRACT

Allogeneic hematopoietic cell transplantation (allo-HCT) recipients are susceptible to viral infections. We conducted a phase 2 trial evaluating the safety and rate of clinically significant infections (CSIs; viremia requiring treatment or end-organ disease) following infusion of posoleucel, a partially HLA-matched, allogeneic, off-the-shelf, multivirus-specific T cell investigational product for preventing CSIs with adenovirus, BK virus, cytomegalovirus, Epstein-Barr virus, human herpesvirus-6, or JC virus. This open-label trial enrolled high-risk allo-HCT recipients based on receiving grafts from umbilical cord blood, haploidentical, mismatched, or matched unrelated donors; post-HCT lymphocytes <180/mm3; or use of T cell depletion. Posoleucel dosing was initiated within 15-49 days of allo-HCT and subsequently every 14 days for up to seven doses. The primary endpoint was the number of CSIs due to the six target viruses by week 14. Of the 26 patients enrolled just three (12%) had a CSI by week 14, each with a single target virus. In vivo expansion of functional virus-specific T cells detected via interferon-γ ELISpot assay was associated with viral control. Persistence of posoleucel-derived T cell clones for up to 14 weeks after the last infusion was confirmed by T cell receptor deep-sequencing. Five patients (19%) had acute GVHD grade II-IV. No patient experienced cytokine release syndrome. All six deaths were due to relapse or disease progression. High-risk allo-HCT patients who received posoleucel had low rates of CSIs from six targeted viruses. Repeat posoleucel dosing was generally safe and well tolerated and associated with functional immune reconstitution. www.clinicaltrials.gov NCT04693637.

2.
Int J Surg Pathol ; : 10668969241226703, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38291647

ABSTRACT

Atrophic kidney-like lesion (AKLL) is a rare kidney lesion, which was recently suggested by the Genitourinary Pathology Society as a provisional entity. As of now, 16 examples of AKLL have been described in the literature. Here we report a new tumor which shows similar clinicopathologic characteristics with those previously reported in AKLL. Immunohistochemical (IHC) studies in the current lesion identified a biphasic staining pattern consisting of a mixture of WT1+/KRT7-/PAX8- large dilated cysts and WT-/KRT7+/PAX8+ small atrophic cysts. Histomorphologic features of AKLL overlap with several neoplastic and non-neoplastic entities which can lead to mischaracterization. Awareness of the differentiating features is likely important when evaluating these lesions.

3.
Cytotherapy ; 2023 Oct 07.
Article in English | MEDLINE | ID: mdl-37804284

ABSTRACT

Mesenchymal stromal cells (MSCs) are promising cell therapy candidates, but their debated efficacy in clinical trials still limits successful adoption. Here, we discuss proceedings from a roundtable session titled "Failure to Launch Mesenchymal Stromal Cells 10 Years Later: What's on the Horizon?" held at the International Society for Cell & Gene Therapy 2023 Annual Meeting. Panelists discussed recent progress toward developing patient-stratification approaches for MSC treatments, highlighting the role of baseline levels of inflammation in mediating MSC treatment efficacy. In addition, MSC critical quality attributes (CQAs) are beginning to be elucidated and applied to investigational MSC products, including immunomodulatory functional assays and other potency markers that will help to ensure product consistency and quality. Lastly, next-generation MSC products, such as culture-priming strategies, were discussed as a promising strategy to augment MSC basal fitness and therapeutic potency. Key variables that will need to be considered alongside investigations of patient stratification approaches, CQAs and next-generation MSC products include the specific disease target being evaluated, route of administration of the cells and cell manufacturing parameters; these factors will have to be matched with postulated mechanisms of action towards treatment efficacy. Taken together, patient stratification metrics paired with the selection of therapeutically potent MSCs (using rigorous CQAs and/or engineered MSC products) represent a path forward to improve clinical successes and regulatory endorsements.

4.
Nat Commun ; 14(1): 4504, 2023 08 16.
Article in English | MEDLINE | ID: mdl-37587144

ABSTRACT

SMNDC1 is a Tudor domain protein that recognizes di-methylated arginines and controls gene expression as an essential splicing factor. Here, we study the specific contributions of the SMNDC1 Tudor domain to protein-protein interactions, subcellular localization, and molecular function. To perturb the protein function in cells, we develop small molecule inhibitors targeting the dimethylarginine binding pocket of the SMNDC1 Tudor domain. We find that SMNDC1 localizes to phase-separated membraneless organelles that partially overlap with nuclear speckles. This condensation behavior is driven by the unstructured C-terminal region of SMNDC1, depends on RNA interaction and can be recapitulated in vitro. Inhibitors of the protein's Tudor domain drastically alter protein-protein interactions and subcellular localization, causing splicing changes for SMNDC1-dependent genes. These compounds will enable further pharmacological studies on the role of SMNDC1 in the regulation of nuclear condensates, gene regulation and cell identity.


Subject(s)
Aptamers, Nucleotide , SMN Complex Proteins , Biomolecular Condensates , Carbocyanines , Nuclear Speckles , Tudor Domain
5.
Immunity ; 56(8): 1809-1824.e10, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37499656

ABSTRACT

Complement factor H (CFH) negatively regulates consumption of complement component 3 (C3), thereby restricting complement activation. Genetic variants in CFH predispose to chronic inflammatory disease. Here, we examined the impact of CFH on atherosclerosis development. In a mouse model of atherosclerosis, CFH deficiency limited plaque necrosis in a C3-dependent manner. Deletion of CFH in monocyte-derived inflammatory macrophages propagated uncontrolled cell-autonomous C3 consumption without downstream C5 activation and heightened efferocytotic capacity. Among leukocytes, Cfh expression was restricted to monocytes and macrophages, increased during inflammation, and coincided with the accumulation of intracellular C3. Macrophage-derived CFH was sufficient to dampen resolution of inflammation, and hematopoietic deletion of CFH in atherosclerosis-prone mice promoted lesional efferocytosis and reduced plaque size. Furthermore, we identified monocyte-derived inflammatory macrophages expressing C3 and CFH in human atherosclerotic plaques. Our findings reveal a regulatory axis wherein CFH controls intracellular C3 levels of macrophages in a cell-autonomous manner, evidencing the importance of on-site complement regulation in the pathogenesis of inflammatory diseases.


Subject(s)
Atherosclerosis , Complement C3 , Animals , Humans , Mice , Atherosclerosis/metabolism , Complement C3/genetics , Complement C3/metabolism , Complement Factor H/genetics , Complement Factor H/metabolism , Inflammation , Macrophages/metabolism
6.
N Engl J Med ; 389(6): 527-539, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37342957

ABSTRACT

BACKGROUND: Increasing evidence links genetic defects affecting actin-regulatory proteins to diseases with severe autoimmunity and autoinflammation, yet the underlying molecular mechanisms are poorly understood. Dedicator of cytokinesis 11 (DOCK11) activates the small Rho guanosine triphosphatase (GTPase) cell division cycle 42 (CDC42), a central regulator of actin cytoskeleton dynamics. The role of DOCK11 in human immune-cell function and disease remains unknown. METHODS: We conducted genetic, immunologic, and molecular assays in four patients from four unrelated families who presented with infections, early-onset severe immune dysregulation, normocytic anemia of variable severity associated with anisopoikilocytosis, and developmental delay. Functional assays were performed in patient-derived cells, as well as in mouse and zebrafish models. RESULTS: We identified rare, X-linked germline mutations in DOCK11 in the patients, leading to a loss of protein expression in two patients and impaired CDC42 activation in all four patients. Patient-derived T cells did not form filopodia and showed abnormal migration. In addition, the patient-derived T cells, as well as the T cells from Dock11-knockout mice, showed overt activation and production of proinflammatory cytokines that were associated with an increased degree of nuclear translocation of nuclear factor of activated T cell 1 (NFATc1). Anemia and aberrant erythrocyte morphologic features were recapitulated in a newly generated dock11-knockout zebrafish model, and anemia was amenable to rescue on ectopic expression of constitutively active CDC42. CONCLUSIONS: Germline hemizygous loss-of-function mutations affecting the actin regulator DOCK11 were shown to cause a previously unknown inborn error of hematopoiesis and immunity characterized by severe immune dysregulation and systemic inflammation, recurrent infections, and anemia. (Funded by the European Research Council and others.).


Subject(s)
Actins , Anemia , Guanine Nucleotide Exchange Factors , Inflammation , Animals , Humans , Mice , Actins/genetics , Actins/metabolism , Anemia/etiology , Anemia/genetics , Disease Models, Animal , Guanine Nucleotide Exchange Factors/deficiency , Guanine Nucleotide Exchange Factors/genetics , Hematopoiesis , Inflammation/etiology , Inflammation/genetics , Zebrafish/genetics , Zebrafish/metabolism
7.
Blood ; 142(9): 827-845, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37249233

ABSTRACT

The nuclear factor of activated T cells (NFAT) family of transcription factors plays central roles in adaptive immunity in murine models; however, their contribution to human immune homeostasis remains poorly defined. In a multigenerational pedigree, we identified 3 patients who carry germ line biallelic missense variants in NFATC1, presenting with recurrent infections, hypogammaglobulinemia, and decreased antibody responses. The compound heterozygous NFATC1 variants identified in these patients caused decreased stability and reduced the binding of DNA and interacting proteins. We observed defects in early activation and proliferation of T and B cells from these patients, amenable to rescue upon genetic reconstitution. Stimulation induced early T-cell activation and proliferation responses were delayed but not lost, reaching that of healthy controls at day 7, indicative of an adaptive capacity of the cells. Assessment of the metabolic capacity of patient T cells revealed that NFATc1 dysfunction rendered T cells unable to engage in glycolysis after stimulation, although oxidative metabolic processes were intact. We hypothesized that NFATc1-mutant T cells could compensate for the energy deficit due to defective glycolysis by using enhanced lipid metabolism as an adaptation, leading to a delayed, but not lost, activation responses. Indeed, we observed increased 13C-labeled palmitate incorporation into citrate, indicating higher fatty acid oxidation, and we demonstrated that metformin and rosiglitazone improved patient T-cell effector functions. Collectively, enabled by our molecular dissection of the consequences of loss-of-function NFATC1 mutations and extending the role of NFATc1 in human immunity beyond receptor signaling, we provide evidence of metabolic plasticity in the context of impaired glycolysis observed in patient T cells, alleviating delayed effector responses.


Subject(s)
NFATC Transcription Factors , T-Lymphocytes , Humans , Mice , Animals , T-Lymphocytes/metabolism , NFATC Transcription Factors/metabolism , CD8-Positive T-Lymphocytes , Glycolysis/genetics , Mutation
8.
Cell Rep ; 40(9): 111288, 2022 08 30.
Article in English | MEDLINE | ID: mdl-36044849

ABSTRACT

Insulin expression is primarily restricted to the pancreatic ß cells, which are physically or functionally depleted in diabetes. Identifying targetable pathways repressing insulin in non-ß cells, particularly in the developmentally related glucagon-secreting α cells, is an important aim of regenerative medicine. Here, we perform an RNA interference screen in a murine α cell line to identify silencers of insulin expression. We discover that knockdown of the splicing factor Smndc1 triggers a global repression of α cell gene-expression programs in favor of increased ß cell markers. Mechanistically, Smndc1 knockdown upregulates the ß cell transcription factor Pdx1 by modulating the activities of the BAF and Atrx chromatin remodeling complexes. SMNDC1's repressive role is conserved in human pancreatic islets, its loss triggering enhanced insulin secretion and PDX1 expression. Our study identifies Smndc1 as a key factor connecting splicing and chromatin remodeling to the control of insulin expression in human and mouse islet cells.


Subject(s)
Chromatin Assembly and Disassembly , Glucagon-Secreting Cells , Insulin-Secreting Cells , Islets of Langerhans , RNA Splicing Factors , RNA Splicing , SMN Complex Proteins , Animals , Glucagon-Secreting Cells/metabolism , Humans , Insulin/metabolism , Insulin Secretion , Insulin-Secreting Cells/metabolism , Islets of Langerhans/metabolism , Mice , RNA Splicing/genetics , RNA Splicing Factors/metabolism , SMN Complex Proteins/metabolism , Transcription Factors/metabolism
9.
PLoS Genet ; 18(8): e1010376, 2022 08.
Article in English | MEDLINE | ID: mdl-35994477

ABSTRACT

The class I histone deacetylases are essential regulators of cell fate decisions in health and disease. While pan- and class-specific HDAC inhibitors are available, these drugs do not allow a comprehensive understanding of individual HDAC function, or the therapeutic potential of isoform-specific targeting. To systematically compare the impact of individual catalytic functions of HDAC1, HDAC2 and HDAC3, we generated human HAP1 cell lines expressing catalytically inactive HDAC enzymes. Using this genetic toolbox we compare the effect of individual HDAC inhibition with the effects of class I specific inhibitors on cell viability, protein acetylation and gene expression. Individual inactivation of HDAC1 or HDAC2 has only mild effects on cell viability, while HDAC3 inactivation or loss results in DNA damage and apoptosis. Inactivation of HDAC1/HDAC2 led to increased acetylation of components of the COREST co-repressor complex, reduced deacetylase activity associated with this complex and derepression of neuronal genes. HDAC3 controls the acetylation of nuclear hormone receptor associated proteins and the expression of nuclear hormone receptor regulated genes. Acetylation of specific histone acetyltransferases and HDACs is sensitive to inactivation of HDAC1/HDAC2. Over a wide range of assays, we determined that in particular HDAC1 or HDAC2 catalytic inactivation mimics class I specific HDAC inhibitors. Importantly, we further demonstrate that catalytic inactivation of HDAC1 or HDAC2 sensitizes cells to specific cancer drugs. In summary, our systematic study revealed isoform-specific roles of HDAC1/2/3 catalytic functions. We suggest that targeted genetic inactivation of particular isoforms effectively mimics pharmacological HDAC inhibition allowing the identification of relevant HDACs as targets for therapeutic intervention.


Subject(s)
Histone Deacetylase 1 , Histone Deacetylase Inhibitors , Acetylation , Histone Deacetylase 1/genetics , Histone Deacetylase 1/metabolism , Histone Deacetylase 2/genetics , Histone Deacetylase 2/metabolism , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Humans , Protein Isoforms/genetics , Protein Isoforms/metabolism
10.
Cureus ; 14(3): e23436, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35481297

ABSTRACT

Systemic scleroderma (SSc) is a chronic autoimmune disorder that can affect various organ systems. About 90% of patients with SSc have gastrointestinal (GI) manifestations, with esophageal dysmotility being the most frequently reported. While esophageal involvement is the most common, other segments of the upper GI tract can be affected as well, such as the stomach or small bowel. Some of the examples of gastric involvement include gastric antral vascular ectasia (GAVE) and gastroparesis. Small bowel involvement can present with reduced contractility, pseudo-obstruction, small intestinal bacterial overgrowth (SIBO), and atrophy. Although many of these manifestations bear little clinical urgency, acute gastric dilation or pseudo-obstruction constitute a medical emergency and require prompt intervention. We are presenting a case of acute gastric dilation with gastric volvulus in the setting of SSc, which is not well reported in the medical literature. We hope to increase providers' awareness of this rare manifestation of SSc to facilitate prompt diagnosis and intervention. Furthermore, we hope to prompt more research to be done to better understand its pathophysiology and determine whether this manifestation of SSc is preventable.

11.
Ann Hematol ; 101(8): 1689-1701, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35488900

ABSTRACT

This phase 1b study evaluated glasdegib (100 mg once daily) + azacitidine in adults with newly diagnosed acute myeloid leukemia (AML), higher-risk myelodysplastic syndromes (MDS), or chronic myelomonocytic leukemia (CMML) who were ineligible for intensive chemotherapy. Of 72 patients enrolled, 12 were in a lead-in safety cohort (LIC) and 60 were in the AML and MDS (including CMML) expansion cohorts. In the LIC, the safety profile of glasdegib + azacitidine was determined to be consistent with those of glasdegib or azacitidine alone, with no evidence of drug-drug interaction. In the expansion cohort, the most frequently (≥ 10%) reported non-hematologic Grade ≥ 3 treatment-emergent adverse events were decreased appetite, electrocardiogram QT prolongation, and hypertension in the AML cohort and sepsis, diarrhea, hypotension, pneumonia, and hyperglycemia in the MDS cohort. Overall response rates in the AML and MDS cohorts were 30.0% and 33.3%, respectively; 47.4% and 46.7% of patients who were transfusion dependent at baseline achieved independence. Median overall survival (95% confidence interval) was 9.2 (6.2-14.0) months and 15.8 (9.3-21.9) months, respectively, and response was associated with molecular mutation clearance. Glasdegib + azacitidine in patients with newly diagnosed AML or MDS demonstrated an acceptable safety profile and preliminary evidence of clinical benefits.Trial registration: ClinicalTrials.gov NCT02367456.


Subject(s)
Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Adult , Azacitidine/adverse effects , Benzimidazoles/adverse effects , Drug Therapy, Combination/adverse effects , Humans , Leukemia, Myeloid, Acute/drug therapy , Myelodysplastic Syndromes/drug therapy , Phenylurea Compounds/adverse effects , Risk Assessment , Treatment Outcome
12.
Cancers (Basel) ; 14(3)2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35159058

ABSTRACT

Selinexor, an oral selective inhibitor of nuclear export, was evaluated in the Phase 2b SADAL study in patients with diffuse large B-cell lymphoma (DLBCL) who previously received two to five prior systemic regimens. In post hoc analyses, we analyzed several categories of patient characteristics (age, renal function, DLBCL subtype, absolute lymphocyte count, transplant status, number of prior lines of therapy, refractory status, Ann Arbor disease stage, and lactate dehydrogenase) at baseline, i.e., during screening procedures, to determine their potential contributions to the efficacy (overall response rate [ORR], duration of response [DOR], overall survival [OS]) and tolerability of selinexor. Across most categories of characteristics, no significant difference was observed in ORR or DOR. OS was significantly longer for patients < 65 vs. ≥ 65 years, and for those with lymphocyte counts ≥ 1000/µL vs. < 1000/µL or lactate dehydrogenase ≤ ULN vs. > ULN. The most common adverse events (AEs) across the characteristics were thrombocytopenia and nausea, and similar rates of grade 3 AEs and serious AEs were observed. With its oral administration, novel mechanism of action, and consistency in responses in heavily pretreated patients, selinexor may help to address an important unmet clinical need in the treatment of DLBCL.

13.
Am J Hematol ; 97(4): 390-400, 2022 04.
Article in English | MEDLINE | ID: mdl-35015307

ABSTRACT

Myeloproliferative neoplasms (MPN) are chronic stem cell disorders characterized by enhanced proliferation of myeloid cells, immune deregulation, and drug resistance. JAK2 somatic mutations drive the disease in 50-60% and CALR mutations in 25-30% of cases. Published data suggest that JAK2-V617F-mutated MPN cells express the resistance-related checkpoint PD-L1. By applying RNA-sequencing on granulocytes of 113 MPN patients, we demonstrate that PD-L1 expression is highest among polycythemia vera patients and that PD-L1 expression correlates with JAK2-V617F mutational burden (R = 0.52; p < .0001). Single nucleotide polymorphism (SNP) arrays showed that chromosome 9p uniparental disomy (UPD) covers both PD-L1 and JAK2 in all MPN patients examined. MPN cells in JAK2-V617F-positive patients expressed higher levels of PD-L1 if 9p UPD was present compared to when it was absent (p < .0001). Moreover, haplotype-based association analyses provided evidence for germline genetic factors at PD-L1 locus contributing to MPN susceptibility independently of the previously described GGCC risk haplotype. We also found that PD-L1 is highly expressed on putative CD34+ CD38- disease-initiating neoplastic stem cells (NSC) in both JAK2 and CALR-mutated MPN. PD-L1 overexpression decreased upon exposure to JAK2 blockers and BRD4-targeting agents, suggesting a role for JAK2-STAT5-signaling and BRD4 in PD-L1 expression. Whether targeting of PD-L1 can overcome NSC resistance in MPN remains to be elucidated in forthcoming studies.


Subject(s)
B7-H1 Antigen , Myeloproliferative Disorders , Polycythemia Vera , Uniparental Disomy , B7-H1 Antigen/genetics , Cell Cycle Proteins/genetics , Humans , Janus Kinase 2/genetics , Mutation , Myeloproliferative Disorders/genetics , Nuclear Proteins/genetics , Polycythemia Vera/genetics , Transcription Factors , Uniparental Disomy/genetics
14.
Clin Lymphoma Myeloma Leuk ; 22(7): 483-494, 2022 07.
Article in English | MEDLINE | ID: mdl-35078739

ABSTRACT

BACKGROUND: Despite a number of treatment options, patients with diffuse large B-cell lymphoma (DLBCL) whose disease has become refractory to treatment have a poor prognosis. Selinexor is a novel, oral drug that is approved to treat patients with relapsed/refractory DLBCL. In this post hoc analysis of the SADAL study, a multinational, open-label study, we evaluated subpopulations to determine if response to single agent selinexor is impacted by number of lines of prior treatment, autologous stem cell transplant (ASCT), response to first and most recent therapies, and time to progressive disease. PATIENTS: Patients (n = 134) with DLBCL after 2-5 prior therapies were enrolled in SADAL and received 60mg selinexor twice weekly. RESULTS: The median overall survival was 9.0 months and median progression free survival was 2.6 months. Patients who had the best overall response rate (ORR) and disease control rate were those who had prior ASCT (42.5% and 50.0%) or responded to last line of therapy (35.9% and 43.5%). Patients with primary refractory DLBCL also showed responses (ORR 21.8%). Adverse events between subgroups were similar to the overall study population, the most common being thrombocytopenia (29.1%), fatigue (7.5%), and nausea (6.0%). CONCLUSION: Regardless of prior therapy and disease refractory status, selinexor treatment demonstrated results consistent with its novel mechanism of action and lack of cross-resistance. Thus, single agent oral selinexor can induce deep, durable, and tolerable responses in patients with DLBCL who have recurrent disease after several chemoimmunotherapy combination regimens.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Lymphoma, Non-Hodgkin , Humans , Hydrazines/adverse effects , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/pathology , Lymphoma, Non-Hodgkin/drug therapy , Triazoles/adverse effects
15.
Clin Lymphoma Myeloma Leuk ; 22(1): 24-33, 2022 01.
Article in English | MEDLINE | ID: mdl-34493477

ABSTRACT

BACKGROUND: The SADAL study evaluated oral selinexor in patients with relapsed and/or refractory diffuse large B-cell lymphoma (DLBCL) after at least 2 prior lines of systemic therapy. In this post-hoc analysis, we analyzed the outcomes of the SADAL study by DLBCL subtype to determine the effects of DLBCL subtypes on efficacy and tolerability of selinexor. PATIENTS AND METHODS: Data from 134 patients in SADAL were analyzed by DLBCL subtypes for overall response rate (ORR), overall survival (OS), duration of treatment response, progression-free survival, and adverse events rate. RESULTS: ORR in the entire cohort was 29.1%, and similar in patients with germinal center (GCB) versus non-GCB DLBCL (31.7% vs. 24.2%, P = 0.45); transformed DLBCL showed a trend towards higher ORR than de novo DLBCL: 38.7% vs. 26.2% (P = 0.23). Despite similar prior treatment regimens and baseline characteristics, patients with DLBCL and normal C-MYC/BCL-2 protein expression levels had a significantly higher ORR (46.2% vs.14.8%, P = 0.012) and significantly longer OS (medians 13.7 vs. 5.1 months, hazard ratio 0.43 [95% CI, 0.23-0.77], P = 0.004) as compared with those whose DLBCL had C-MYC and BCL-2 overexpression. Among patients who had normal expression levels of either C-MYC or BCL-2 and baseline hemoglobin levels ≥ 10g/dL, ORR was 51.5% (n = 47), with median OS of 15.5 months and median PFS of 4.6 months. Similar rates of adverse events were noted in all subgroups. CONCLUSIONS: Overall, single agent oral selinexor showed strong responses in patients with limited treatment alternatives regardless of germinal center B-cell type or disease origin.


Subject(s)
Hydrazines/therapeutic use , Lymphoma, Large B-Cell, Diffuse/drug therapy , Triazoles/therapeutic use , Adult , Aged , Aged, 80 and over , Female , Humans , Hydrazines/pharmacology , Lymphoma, Large B-Cell, Diffuse/pathology , Male , Middle Aged , Treatment Outcome , Triazoles/pharmacology
16.
Angew Chem Int Ed Engl ; 61(8): e202115100, 2022 02 14.
Article in English | MEDLINE | ID: mdl-34825766

ABSTRACT

Vectorial catalysis-controlling multi-step reactions in a programmed sequence and by defined spatial localization in a microscale device-is an enticing goal in bio-inspired catalysis research. However, translating concepts from natural cascade biocatalysis into artificial hierarchical chemical systems remains a challenge. Herein, we demonstrate integration of two different surface-anchored nanometer-sized metal-organic frameworks (MOFs) in a microfluidic device for modelling vectorial catalysis. Catalyst immobilization at defined sections along the microchannel and a two-step cascade reaction was conducted with full conversion after 30 seconds and high turnover frequencies (TOF≈105  h-1 ).

17.
Nat Med ; 27(11): 1928-1940, 2021 11.
Article in English | MEDLINE | ID: mdl-34663987

ABSTRACT

Genes involved in distinct diabetes types suggest shared disease mechanisms. Here we show that One Cut Homeobox 1 (ONECUT1) mutations cause monogenic recessive syndromic diabetes in two unrelated patients, characterized by intrauterine growth retardation, pancreas hypoplasia and gallbladder agenesis/hypoplasia, and early-onset diabetes in heterozygous relatives. Heterozygous carriers of rare coding variants of ONECUT1 define a distinctive subgroup of diabetic patients with early-onset, nonautoimmune diabetes, who respond well to diabetes treatment. In addition, common regulatory ONECUT1 variants are associated with multifactorial type 2 diabetes. Directed differentiation of human pluripotent stem cells revealed that loss of ONECUT1 impairs pancreatic progenitor formation and a subsequent endocrine program. Loss of ONECUT1 altered transcription factor binding and enhancer activity and NKX2.2/NKX6.1 expression in pancreatic progenitor cells. Collectively, we demonstrate that ONECUT1 controls a transcriptional and epigenetic machinery regulating endocrine development, involved in a spectrum of diabetes, encompassing monogenic (recessive and dominant) as well as multifactorial inheritance. Our findings highlight the broad contribution of ONECUT1 in diabetes pathogenesis, marking an important step toward precision diabetes medicine.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/pathology , Hepatocyte Nuclear Factor 6/genetics , Pancreas/embryology , Cell Differentiation/genetics , Congenital Abnormalities/genetics , Fetal Growth Retardation/genetics , Gallbladder/abnormalities , Homeobox Protein Nkx-2.2/biosynthesis , Homeodomain Proteins/biosynthesis , Humans , Infant , Infant, Newborn , Male , Multifactorial Inheritance/genetics , Organogenesis/genetics , Pancreas/abnormalities , Pancreatic Diseases/congenital , Pancreatic Diseases/genetics , Pluripotent Stem Cells/cytology , Transcription, Genetic/genetics
18.
Nanoscale ; 13(35): 15038-15047, 2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34533180

ABSTRACT

Nanoparticles (NPs) of Pd1--xGax (x = 0.67, 0.5, 0.33), stabilized in non-aqueous colloidal solution, were obtained via an organometallic approach under mild conditions using [Pd2(dvds)3] and GaCp* as all-hydrocarbon ligated metal-precursor compounds (dvds = 1,1,3,3-tetramethyl-1,3-divinyl-disiloxane; Cp* = η5-C5Me5; Me = CH3). The reaction of the two precursors involves the formation of a library of molecular clusters [PdnGamCp*y(dvds)z], as shown by liquid injection field desorption ionization mass spectrometry (LIFDI-MS). Full characterization of the catalytic system (HR-TEM, EDX, DLS, PXRD, XPS, NMR, IR, Raman) confirmed the formation of ultra-small, spherical NPs with narrow size distributions ranging from 1.2 ± 0.2 nm to 2.1 ± 0.4 nm (depending on the Pd : Ga ratio). The catalytic performance of the Pd1--xGax NPs in the semi-hydrogenation of terminal and internal alkynes and the influence of the gallium content on product selectivity were investigated. The highest activities (65%) and selectivities (81%) are achieved using colloids with a "stoichiometric" Pd/Ga ratio of 1 : 1 at 0 °C and 2.0 bar H2 pressure. While lower Ga ratios lead to an increase in activity, higher Ga contents increase the olefin selectivity but are detrimental to the activity.

19.
J Cancer Res Clin Oncol ; 147(12): 3769-3771, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34373943

ABSTRACT

PURPOSE: We report a novel side effect of Crizotinib, an oral ALK inhibitor used in the treatment of non-small cell lung cancer (NSCLC) with activating rearrangement of EML4-ALK. It expands the known spectrum of complications of Crizotinib. METHODS: Clinical case report. RESULTS: Multiple aseptic and recurrent abscesses were observed in the liver, thoracic wall as well as in both kidneys in a 75-year-old female patient suffering from NSCLC who had been treated with Crizotinib for almost 2 years. After discontinuation of the treatment the abscesses dissolved spontaneously and did not reoccur. CONCLUSION: Aseptic abscesses under treatment with Crizotinib are not restricted to the kidneys as described before, but can also occur in other abdominal organs as the liver and even in the thoracic wall. We postulate that this finding may point to a yet unknown not tissue-dependent mechanism of action.


Subject(s)
Abscess/chemically induced , Antineoplastic Agents/adverse effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Crizotinib/adverse effects , Lung Neoplasms/drug therapy , Aged , Carcinoma, Non-Small-Cell Lung/genetics , Female , Humans , Lung Neoplasms/genetics , Oncogene Proteins, Fusion/genetics , Protein Kinase Inhibitors/adverse effects
20.
Blood Cancer J ; 11(7): 137, 2021 07 31.
Article in English | MEDLINE | ID: mdl-34333533

ABSTRACT

Mutations of calreticulin (CALR) are the second most prevalent driver mutations in essential thrombocythemia and primary myelofibrosis. To identify potential targeted therapies for CALR mutated myeloproliferative neoplasms, we searched for small molecules that selectively inhibit the growth of CALR mutated cells using high-throughput drug screening. We investigated 89 172 compounds using isogenic cell lines carrying CALR mutations and identified synthetic lethality with compounds targeting the ATR-CHK1 pathway. The selective inhibitory effect of these compounds was validated in a co-culture assay of CALR mutated and wild-type cells. Of the tested compounds, CHK1 inhibitors potently depleted CALR mutated cells, allowing wild-type cell dominance in the co-culture over time. Neither CALR deficient cells nor JAK2V617F mutated cells showed hypersensitivity to ATR-CHK1 inhibition, thus suggesting specificity for the oncogenic activation by the mutant CALR. CHK1 inhibitors induced replication stress in CALR mutated cells revealed by elevated pan-nuclear staining for γH2AX and hyperphosphorylation of RPA2. This was accompanied by S-phase cell cycle arrest due to incomplete DNA replication. Transcriptomic and phosphoproteomic analyses revealed a replication stress signature caused by oncogenic CALR, suggesting an intrinsic vulnerability to CHK1 perturbation. This study reveals the ATR-CHK1 pathway as a potential therapeutic target in CALR mutated hematopoietic cells.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/metabolism , Calreticulin/genetics , Checkpoint Kinase 1/metabolism , Drug Discovery , Hematopoietic Stem Cells/drug effects , Signal Transduction/drug effects , Cell Line , Drug Evaluation, Preclinical , Hematopoietic Stem Cells/metabolism , High-Throughput Screening Assays , Humans , Mutation/drug effects , Primary Myelofibrosis/drug therapy , Primary Myelofibrosis/genetics , Primary Myelofibrosis/metabolism , Protein Kinase Inhibitors/pharmacology , Thrombocythemia, Essential/drug therapy , Thrombocythemia, Essential/genetics , Thrombocythemia, Essential/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...