Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
J Infect ; 88(4): 106131, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38431153

ABSTRACT

OBJECTIVES: Lymphopenia at hospital admission occurs in over one-third of patients with community-acquired pneumonia (CAP), yet its clinical relevance and pathophysiological implications remain underexplored. We evaluated outcomes and immune features of patients with lymphopenic CAP (L-CAP), a previously described immunophenotype characterized by admission lymphocyte count <0.724 × 109 cells/L. METHODS: Observational study in 149 patients admitted to a general ward for CAP. We measured 34 plasma biomarkers reflective of inflammation, endothelial cell responses, coagulation, and immune checkpoints. We characterized lymphocyte phenotypes in 29 patients using spectral flow cytometry. RESULTS: L-CAP occurred in 45 patients (30.2%) and was associated with prolonged time-to-clinical-stability (median 5 versus 3 days), also when we accounted for competing events for reaching clinical stability and adjusted for baseline covariates (subdistribution hazard ratio 0.63; 95% confidence interval 0.45-0.88). L-CAP patients demonstrated a proportional depletion of CD4 T follicular helper cells, CD4 T effector memory cells, naïve CD8 T cells and IgG+ B cells. Plasma biomarker analyses indicated increased activation of the cytokine network and the vascular endothelium in L-CAP. CONCLUSIONS: L-CAP patients have a protracted clinical recovery course and a more broadly dysregulated host response. These findings highlight the prognostic and pathophysiological relevance of admission lymphopenia in patients with CAP.


Subject(s)
Community-Acquired Infections , Lymphopenia , Pneumonia , Humans , Inflammation , Hospitalization
2.
JCI Insight ; 9(4)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38385743

ABSTRACT

The lipidome of immune cells during infection has remained unexplored, although evidence of the importance of lipids in the context of immunity is mounting. In this study, we performed untargeted lipidomic analysis of blood monocytes and neutrophils from patients hospitalized for pneumonia and age- and sex-matched noninfectious control volunteers. We annotated 521 and 706 lipids in monocytes and neutrophils, respectively, which were normalized to an extensive set of internal standards per lipid class. The cellular lipidomes were profoundly altered in patients, with both common and distinct changes between the cell types. Changes involved every level of the cellular lipidome: differential lipid species, class-wide shifts, and altered saturation patterns. Overall, differential lipids were mainly less abundant in monocytes and more abundant in neutrophils from patients. One month after hospital admission, lipidomic changes were fully resolved in monocytes and partially in neutrophils. Integration of lipidomic and concurrently collected transcriptomic data highlighted altered sphingolipid metabolism in both cell types. Inhibition of ceramide and sphingosine-1-phosphate synthesis in healthy monocytes and neutrophils resulted in blunted cytokine responses upon stimulation with lipopolysaccharide. These data reveal major lipidomic remodeling in immune cells during infection, and link the cellular lipidome to immune functionality.


Subject(s)
Monocytes , Pneumonia , Humans , Neutrophils , Lipidomics , Lipopolysaccharides
3.
Am J Respir Crit Care Med ; 209(8): 973-986, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38240721

ABSTRACT

Rationale: The plasma lipidome has the potential to reflect many facets of the host status during severe infection. Previous work is limited to specific lipid groups or was focused on lipids as prognosticators.Objectives: To map the plasma lipidome during sepsis due to community-acquired pneumonia (CAP) and determine the disease specificity and associations with clinical features.Methods: We analyzed 1,833 lipid species across 33 classes in 169 patients admitted to the ICU with sepsis due to CAP, 51 noninfected ICU patients, and 48 outpatient controls. In a paired analysis, we reanalyzed patients still in the ICU 4 days after admission (n = 82).Measurements and Main Results: A total of 58% of plasma lipids were significantly lower in patients with CAP-attributable sepsis compared with outpatient controls (6% higher, 36% not different). We found strong lipid class-specific associations with disease severity, validated across two external cohorts, and inflammatory biomarkers, in which triacylglycerols, cholesterol esters, and lysophospholipids exhibited the strongest associations. A total of 36% of lipids increased over time, and stratification by survival revealed diverging lipid recovery, which was confirmed in an external cohort; specifically, a 10% increase in cholesterol ester levels was related to a lower odds ratio (0.84; P = 0.006) for 30-day mortality (absolute mortality, 18 of 82). Comparison with noninfected ICU patients delineated a substantial common illness response (57.5%) and a distinct lipidomic signal for patients with CAP-attributable sepsis (37%).Conclusions: Patients with sepsis due to CAP exhibit a time-dependent and partially disease-specific shift in their plasma lipidome that correlates with disease severity and systemic inflammation and is associated with higher mortality.


Subject(s)
Community-Acquired Infections , Pneumonia , Sepsis , Humans , Lipidomics , Pneumonia/complications , Sepsis/complications , Lipids , Severity of Illness Index , Intensive Care Units
4.
Am J Respir Crit Care Med ; 209(4): 402-416, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-37948687

ABSTRACT

Rationale: Lymphopenia in coronavirus disease (COVID-19) is associated with increased mortality. Objectives: To explore the association between lymphopenia, host response aberrations, and mortality in patients with lymphopenic COVID-19. Methods: We determined 43 plasma biomarkers reflective of four pathophysiological domains: endothelial cell and coagulation activation, inflammation and organ damage, cytokine release, and chemokine release. We explored if decreased concentrations of lymphocyte-derived proteins in patients with lymphopenia were associated with an increase in mortality. We sought to identify host response phenotypes in patients with lymphopenia by cluster analysis of plasma biomarkers. Measurements and Main Results: A total of 439 general ward patients with COVID-19 were stratified by baseline lymphocyte counts: normal (>1.0 × 109/L; n = 167), mild lymphopenia (>0.5 to ⩽1.0 × 109/L; n = 194), and severe lymphopenia (⩽0.5 × 109/L; n = 78). Lymphopenia was associated with alterations in each host response domain. Lymphopenia was associated with increased mortality. Moreover, in patients with lymphopenia (n = 272), decreased concentrations of several lymphocyte-derived proteins (e.g., CCL5, IL-4, IL-13, IL-17A) were associated with an increase in mortality (at P < 0.01 or stronger significance levels). A cluster analysis revealed three host response phenotypes in patients with lymphopenia: "hyporesponsive" (23.2%), "hypercytokinemic" (36.4%), and "inflammatory-injurious" (40.4%), with substantially differing mortality rates of 9.5%, 5.1%, and 26.4%, respectively. A 10-biomarker model accurately predicted these host response phenotypes in an external cohort with similar mortality distribution. The inflammatory-injurious phenotype showed a remarkable combination of relatively high inflammation and organ damage markers with high antiinflammatory cytokine levels yet low proinflammatory cytokine levels. Conclusions: Lymphopenia in COVID-19 signifies a heterogenous group of patients with distinct host response features. Specific host responses contribute to lymphopenia-associated mortality in COVID-19, including reduced CCL5 levels.


Subject(s)
Anemia , COVID-19 , Lymphopenia , Humans , COVID-19/complications , SARS-CoV-2 , Lymphopenia/complications , Cytokines , Inflammation/complications , Biomarkers , Anemia/complications
5.
Front Immunol ; 14: 1260283, 2023.
Article in English | MEDLINE | ID: mdl-38077404

ABSTRACT

Background: Community-acquired pneumonia (CAP) represents a major health burden worldwide. Dysregulation of the immune response plays an important role in adverse outcomes in patients with CAP. Methods: We analyzed peripheral blood mononuclear cells by 36-color spectral flow cytometry in adult patients hospitalized for CAP (n=40), matched control subjects (n=31), and patients hospitalized for COVID-19 (n=35). Results: We identified 86 immune cell metaclusters, 19 of which (22.1%) were differentially abundant in patients with CAP versus matched controls. The most notable differences involved classical monocyte metaclusters, which were more abundant in CAP and displayed phenotypic alterations reminiscent of immunosuppression, increased susceptibility to apoptosis, and enhanced expression of chemokine receptors. Expression profiles on classical monocytes, driven by CCR7 and CXCR5, divided patients with CAP into two clusters with a distinct inflammatory response and disease course. The peripheral immune response in patients with CAP was highly similar to that in patients with COVID-19, but increased CCR7 expression on classical monocytes was only present in CAP. Conclusion: CAP is associated with profound cellular changes in blood that mainly relate to classical monocytes and largely overlap with the immune response detected in COVID-19.


Subject(s)
COVID-19 , Community-Acquired Infections , Pneumonia , Adult , Humans , Leukocytes, Mononuclear , Receptors, CCR7 , Immunity
6.
Res Pract Thromb Haemost ; 7(7): 102213, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38077825

ABSTRACT

Background: Alterations in platelet function have been implicated in the pathophysiology of COVID-19 since the beginning of the pandemic. While early reports linked hyperactivated platelets to thromboembolic events in COVID-19, subsequent investigations demonstrated hyporeactive platelets with a procoagulant phenotype. Mitochondria are important for energy metabolism and the function of platelets. Objectives: Here, we sought to map the energy metabolism of platelets in a cohort of noncritically ill COVID-19 patients and assess platelet mitochondrial function, activation status, and responsiveness to external stimuli. Methods: We enrolled hospitalized COVID-19 patients and controls between October 2020 and December 2021. Platelets function and metabolism was analyzed by flow cytometry, metabolomics, glucose fluxomics, electron and fluorescence microscopy and western blot. Results: Platelets from COVID-19 patients showed increased phosphatidylserine externalization indicating a procoagulant phenotype and hyporeactivity to ex vivo stimuli, associated with profound mitochondrial dysfunction characterized by mitochondrial depolarization, lower mitochondrial DNA-encoded transcript levels, an altered mitochondrial morphology consistent with increased mitochondrial fission, and increased pyruvate/lactate ratios in platelet supernatants. Metabolic profiling by untargeted metabolomics revealed NADH, NAD+, and ATP among the top decreased metabolites in patients' platelets, suggestive of energy metabolism failure. Consistently, platelet fluxomics analyses showed a strongly reduced utilization of 13C-glucose in all major energy pathways together with a rerouting of glucose to de novo generation of purine metabolites. Patients' platelets further showed evidence of oxidative stress, together with increased glutathione oxidation and synthesis. Addition of plasma from COVID-19 patients to normal platelets partially reproduced the phenotype of patients' platelets and disclosed a temporal relationship between mitochondrial decay and (subsequent) phosphatidylserine exposure and hyporeactivity. Conclusion: These data link energy metabolism failure in platelets from COVID-19 patients with a prothrombotic platelet phenotype with features matching cell death.

7.
Thromb Res ; 229: 187-197, 2023 09.
Article in English | MEDLINE | ID: mdl-37541167

ABSTRACT

BACKGROUND: Thrombocytopenia is associated with increased mortality in COVID-19 patients. OBJECTIVE: To determine the association between thrombocytopenia and alterations in host response pathways implicated in disease pathogenesis in patients with severe COVID-19. PATIENTS/METHODS: We studied COVID-19 patients admitted to a general hospital ward included in a national (CovidPredict) cohort derived from 13 hospitals in the Netherlands. In a subgroup, 43 host response biomarkers providing insight in aberrations in distinct pathophysiological domains (coagulation and endothelial cell function; inflammation and damage; cytokines and chemokines) were determined in plasma obtained at a single time point within 48 h after admission. Patients were stratified in those with normal platelet counts (150-400 × 109/L) and those with thrombocytopenia (<150 × 109/L). RESULTS: 6.864 patients were enrolled in the national cohort, of whom 1.348 had thrombocytopenia and 5.516 had normal platelets counts; the biomarker cohort consisted of 429 patients, of whom 85 with thrombocytopenia and 344 with normal platelet counts. Plasma D-dimer levels were not different in thrombocytopenia, although patients with moderate-severe thrombocytopenia (<100 × 109/L) showed higher D-dimer levels, indicating enhanced coagulation activation. Patients with thrombocytopenia had lower plasma levels of many proinflammatory cytokines and chemokines, and antiviral mediators, suggesting involvement of platelets in inflammation and antiviral immunity. Thrombocytopenia was associated with alterations in endothelial cell biomarkers indicative of enhanced activation and a relatively preserved glycocalyx integrity. CONCLUSION: Thrombocytopenia in hospitalized patients with severe COVID-19 is associated with broad host response changes across several pathophysiological domains. These results suggest a role of platelets in the immune response during severe COVID-19.


Subject(s)
Anemia , COVID-19 , Thrombocytopenia , Humans , COVID-19/complications , Anemia/complications , Biomarkers , Inflammation/complications , Cytokines
8.
iScience ; 26(7): 107181, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37496676

ABSTRACT

Neutrophils are potent immune cells with key antimicrobial functions. Previous in vitro work has shown that neutrophil effector functions are mainly fueled by intracellular glycolysis. Little is known about the state of neutrophils still in the circulation in patients during infection. Here, we combined flow cytometry, stimulation assays, transcriptomics, and metabolomics to investigate the link between inflammatory and metabolic pathways in blood neutrophils of patients with community-acquired pneumonia. Patients' neutrophils, relative to neutrophils from age- and sex- matched controls, showed increased degranulation upon ex vivo stimulation, and portrayed distinct upregulation of inflammatory transcriptional programs. This neutrophil phenotype was accompanied by a high-energy state with increased intracellular ATP content, and transcriptomic and metabolic upregulation of glycolysis and glycogenolysis. One month after hospital admission, these metabolic and transcriptomic changes were largely normalized. These data elucidate the molecular programs that underpin a balanced, yet primed state of blood neutrophils during pneumonia.

9.
Eur Respir J ; 62(1)2023 07.
Article in English | MEDLINE | ID: mdl-37080568

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19)-induced mortality occurs predominantly in older patients. Several immunomodulating therapies seem less beneficial in these patients. The biological substrate behind these observations is unknown. The aim of this study was to obtain insight into the association between ageing, the host response and mortality in patients with COVID-19. METHODS: We determined 43 biomarkers reflective of alterations in four pathophysiological domains: endothelial cell and coagulation activation, inflammation and organ damage, and cytokine and chemokine release. We used mediation analysis to associate ageing-driven alterations in the host response with 30-day mortality. Biomarkers associated with both ageing and mortality were validated in an intensive care unit and external cohort. RESULTS: 464 general ward patients with COVID-19 were stratified according to age decades. Increasing age was an independent risk factor for 30-day mortality. Ageing was associated with alterations in each of the host response domains, characterised by greater activation of the endothelium and coagulation system and stronger elevation of inflammation and organ damage markers, which was independent of an increase in age-related comorbidities. Soluble tumour necrosis factor receptor 1, soluble triggering receptor expressed on myeloid cells 1 and soluble thrombomodulin showed the strongest correlation with ageing and explained part of the ageing-driven increase in 30-day mortality (proportion mediated: 13.0%, 12.9% and 12.6%, respectively). CONCLUSIONS: Ageing is associated with a strong and broad modification of the host response to COVID-19, and specific immune changes likely contribute to increased mortality in older patients. These results may provide insight into potential age-specific immunomodulatory targets in COVID-19.


Subject(s)
COVID-19 , Humans , Aged , Biomarkers , Inflammation , Cytokines , Aging
10.
Ned Tijdschr Geneeskd ; 1672023 04 12.
Article in Dutch | MEDLINE | ID: mdl-37052399

ABSTRACT

In this article, we describe the process - from the first draft, through peer revision to a final manuscript - of writing a scientific article only using AI. We discuss the problems and questions that arise and make recommendations for how text-generative AI may be used in the medical-scientific world.


Subject(s)
Artificial Intelligence , Writing , Humans
11.
Crit Care ; 27(1): 102, 2023 03 11.
Article in English | MEDLINE | ID: mdl-36906606

ABSTRACT

Sepsis involves the dynamic interplay between a pathogen, the host response, the failure of organ systems, medical interventions and a myriad of other factors. This together results in a complex, dynamic and dysregulated state that has remained ungovernable thus far. While it is generally accepted that sepsis is very complex indeed, the concepts, approaches and methods that are necessary to understand this complexity remain underappreciated. In this perspective we view sepsis through the lens of complexity theory. We describe the concepts that support viewing sepsis as a state of a highly complex, non-linear and spatio-dynamic system. We argue that methods from the field of complex systems are pivotal for a fuller understanding of sepsis, and we highlight the progress that has been made over the last decades in this respect. Still, despite these considerable advancements, methods like computational modelling and network-based analyses continue to fly under the general scientific radar. We discuss what barriers contribute to this disconnect, and what we can do to embrace complexity with regards to measurements, research approaches and clinical applications. Specifically, we advocate a focus on longitudinal, more continuous biological data collection in sepsis. Understanding the complexity of sepsis will require a huge multidisciplinary effort, in which computational approaches derived from complex systems science must be supported by, and integrated with, biological data. Such integration could finetune computational models, guide validation experiments, and identify key pathways that could be targeted to modulate the system to the benefit of the host. We offer an example for immunological predictive modelling, which may inform agile trials that could be adjusted throughout the trajectory of disease. Overall, we argue that we should expand our current mental frameworks of sepsis, and embrace nonlinear, system-based thinking in order to move the field forward.


Subject(s)
Sepsis , Humans , Computer Simulation
12.
BMJ ; 379: e072784, 2022 12 19.
Article in English | MEDLINE | ID: mdl-36535672

ABSTRACT

OBJECTIVE: To investigate the typing skills of healthcare professionals. DESIGN: Cross sectional study. SETTING: Two large tertiary medical centres in Amsterdam, the Netherlands. PARTICIPANTS: 2690 hospital employees working in patient care, research, or medical education. MAIN OUTCOME MEASURES: Participants completed a custom built, web based, Santa themed, typing test in 60 seconds and filled out an associated questionnaire. The primary outcome was corrected typing speed, defined as crude typing speed (words per minute) multiplied by accuracy (correct characters as a percentage of total characters in the final transcribed text). Feelings towards administrative tasks scored on the Visual Analogue Scale to Weigh Respondents' Internalised Typing Enjoyment (VAS-WRITE), in which 0 represents the most negative and 100 the most positive feelings towards administration, were also recorded. RESULTS: Between 18 and 21 May 2021, a representative cohort of 2690 study participants was recruited (1942 (72.2%) were younger than 40 years; 2065 (76.8%) were women). Respondents' mean typing speed was 60.1 corrected words per minute (standard deviation 20.8; range 8.0-136.6) with substantial differences between professions and specialties, in which physicians in internal medicine were the fastest among the medical professionals. Typing speed decreased significantly with every age decade (rho -0.51, P<0.001), and people with a history of completing a typing course were more than 20% faster than those who had not (mean difference 12.1 words (standard error 0.8), (95% confidence interval 10.6 to 13.6), P<0.001). The corrected typing speed did not differ between genders (0.5 (0.9) words, (-1.4 to 2.4), P=0.61). Women were less negative towards administration than were men (mean difference VAS-WRITE score 7.68 (standard error 1.17), (95% confidence interval 5.33 to 10.03), P<0.001). Of all professional groups, medical staff reported the most negative feelings towards administration (mean VAS-WRITE score of 33.5 (standard deviation 22.9)). CONCLUSIONS: Important differences were reported in typing proficiency between age groups, professions, and medical specialties. Specific groups are at a disadvantage in an increasingly digitalised healthcare system, and these data could inform the implementation of training modules and alternative methods of data entry to level the playing field.


Subject(s)
Education, Medical , Medicine , Physicians , Humans , Male , Female , Cross-Sectional Studies , Health Personnel
13.
Biochim Biophys Acta Mol Basis Dis ; 1868(11): 166519, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35964875

ABSTRACT

BACKGROUND: Community-acquired pneumonia (CAP) is responsible for a high morbidity and mortality worldwide. Monocytes are essential for pathogen recognition and the initiation of an innate immune response. Immune cells induce intracellular glycolysis upon activation to support several functions. OBJECTIVE: To obtain insight in the metabolic profile of blood monocytes during CAP, with a focus on glycolysis and branching metabolic pathways, and to determine a possible association between intracellular metabolite levels and monocyte function. METHODS: Monocytes were isolated from blood of patients with CAP within 24 h of hospital admission and from control subjects matched for age, sex and chronic comorbidities. Changes in glycolysis, oxidative phosphorylation (OXPHOS), tricarboxylic acid (TCA) cycle and the pentose phosphate pathway were investigated through RNA sequencing and metabolomics measurements. Monocytes were stimulated ex vivo with lipopolysaccharide (LPS) to determine their capacity to produce tumor necrosis factor (TNF), interleukin (IL)-1ß and IL-10. RESULTS: 50 patients with CAP and 25 non-infectious control subjects were studied. When compared with control monocytes, monocytes from patients showed upregulation of many genes involved in glycolysis, including PKM, the gene encoding pyruvate kinase, the rate limiting enzyme for pyruvate production. Gene set enrichment analysis of OXPHOS, the TCA cycle and the pentose phosphate pathway did not reveal differences between monocytes from patients and controls. Patients' monocytes had elevated intracellular levels of pyruvate and the TCA cycle intermediate α-ketoglutarate. Monocytes from patients were less capable of producing cytokines upon LPS stimulation. Intracellular pyruvate (but not α-ketoglutarate) concentrations positively correlated with IL-1ß and IL-10 levels released by patients' (but not control) monocytes upon exposure to LPS. CONCLUSION: These results suggest that elevated intracellular pyruvate levels may partially maintain cytokine production capacity of hyporesponsive monocytes from patients with CAP.


Subject(s)
Monocytes , Pneumonia , Cytokines/metabolism , Humans , Interleukin-10/metabolism , Intracellular Space , Lipopolysaccharides/pharmacology , Monocytes/metabolism , Pneumonia/metabolism , Pyruvate Kinase/metabolism , Pyruvic Acid/metabolism , Tricarboxylic Acids , Tumor Necrosis Factor-alpha/metabolism
14.
Thromb Haemost ; 122(10): 1683-1692, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35850149

ABSTRACT

BACKGROUND: Activated platelets have been implicated in the proinflammatory and prothrombotic phenotype of coronavirus disease 2019 (COVID-19). While it is increasingly recognized that lipids have important structural and signaling roles in platelets, the lipidomic landscape of platelets during infection has remained unexplored. OBJECTIVE: To investigate the platelet lipidome of patients hospitalized for COVID-19. METHODS: We performed untargeted lipidomics in platelets of 25 patients hospitalized for COVID-19 and 23 noninfectious controls with similar age and sex characteristics, and with comparable comorbidities. RESULTS: Twenty-five percent of the 1,650 annotated lipids were significantly different between the groups. The significantly altered part of the platelet lipidome mostly comprised lipids that were less abundant in patients with COVID-19 (20.4% down, 4.6% up, 75% unchanged). Platelets from COVID-19 patients showed decreased levels of membrane plasmalogens, and a distinct decrease of long-chain, unsaturated triacylglycerols. Conversely, platelets from patients with COVID-19 displayed class-wide higher abundances of bis(monoacylglycero)phosphate and its biosynthetic precursor lysophosphatidylglycerol. Levels of these classes positively correlated with ex vivo platelet reactivity-as measured by P-selectin expression after PAR1 activation-irrespective of disease state. CONCLUSION: Taken together, this investigation provides the first exploration of the profound impact of infection on the human platelet lipidome, and reveals associations between the lipid composition of platelets and their reactivity. These results warrant further lipidomic research in other infections and disease states involving platelet pathophysiology.


Subject(s)
Blood Platelets , COVID-19 , Blood Platelets/metabolism , Humans , Lipidomics , P-Selectin/metabolism , Plasmalogens/metabolism , Platelet Activation , Receptor, PAR-1/metabolism , Triglycerides/metabolism
15.
Biochim Biophys Acta Mol Basis Dis ; 1868(10): 166488, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35835414

ABSTRACT

Most macrophages generate energy to mount an inflammatory cytokine response by increased glucose metabolism through intracellular glycolysis. Previous studies have suggested that alveolar macrophages (AMs), which reside in a glucose-poor natural environment, are less capable to utilize glycolysis and instead rely on other substrates to fuel oxidative phosphorylation (OXPHOS) for energy supply. At present, it is not known whether AMs are capable to use glucose metabolism to produce cytokines when other metabolic options are blocked. Here, we studied human AMs retrieved by bronchoalveolar lavage from healthy subjects, and examined their glucose metabolism in response to activation by the gram-negative bacterial component lipopolysaccharide (LPS) ex vivo. The immunological and metabolic responses of AMs were compared to those of cultured blood monocyte-derived macrophages (MDMs) from the same subjects. LPS stimulation enhanced cytokine release by both AMs and MDMs, which was associated with increased lactate release by MDMs (reflecting glycolysis), but not by AMs. In agreement, LPS induced higher mRNA expression of multiple glycolytic regulators in MDMs, but not in AMs. Flux analyses of [13C]-glucose revealed no differences in [13C]-incorporation in glucose metabolism intermediates in AMs. Inhibition of OXPHOS by oligomycin strongly reduced LPS-induced cytokine production by AMs, but not by MDMs. Collectively, these results indicate that human AMs, in contrast to MDMs, do not use glucose metabolism during LPS-induced activation and fully rely on OXPHOS for cytokine production.


Subject(s)
Lipopolysaccharides , Macrophages, Alveolar , Cytokines/metabolism , Glucose/metabolism , Humans , Lipopolysaccharides/metabolism , Lipopolysaccharides/pharmacology , Macrophages/metabolism
16.
Respir Res ; 23(1): 145, 2022 Jun 03.
Article in English | MEDLINE | ID: mdl-35659223

ABSTRACT

Dexamethasone improves clinical outcomes in COVID-19 patients requiring supplementary oxygen. We investigated possible mechanisms of action by comparing sixteen plasma host response biomarkers in general ward patients before and after implementation of dexamethasone as standard of care. 48 patients without and 126 patients with dexamethasone treatment were sampled within 48 h of admission. Endothelial cell and coagulation activation biomarkers were comparable. Dexamethasone treatment was associated with lower plasma interleukin (IL)-6 and IL-1 receptor antagonist levels, whilst other inflammation parameters were not affected. These data argue against modification of vascular-procoagulant responses as an early mechanism of action of dexamethasone in COVID-19.


Subject(s)
COVID-19 Drug Treatment , Biomarkers , Dexamethasone/therapeutic use , Humans , Patients' Rooms
17.
EBioMedicine ; 81: 104082, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35660785

ABSTRACT

BACKGROUND: Community-acquired pneumonia (CAP) can be caused by a variety of pathogens, of which Streptococcus pneumoniae, Influenza and currently SARS-CoV-2 are the most common. We sought to identify shared and pathogen-specific host response features by directly comparing different aetiologies of CAP. METHODS: We measured 72 plasma biomarkers in a cohort of 265 patients hospitalized for CAP, all sampled within 48 hours of admission, and 28 age-and sex matched non-infectious controls. We stratified the biomarkers into several pathophysiological domains- antiviral response, vascular response and function, coagulation, systemic inflammation, and immune checkpoint markers. We directly compared CAP caused by SARS-CoV-2 (COVID-19, n=39), Streptococcus pneumoniae (CAP-strep, n=27), Influenza (CAP-flu, n=22) and other or unknown pathogens (CAP-other, n=177). We adjusted the comparisons for age, sex and disease severity scores. FINDINGS: Biomarkers reflective of a stronger cell-mediated antiviral response clearly separated COVID-19 from other CAPs (most notably granzyme B). Biomarkers reflecting activation and function of the vasculature showed endothelial barrier integrity was least affected in COVID-19, while glycocalyx degradation and angiogenesis were enhanced relative to other CAPs. Notably, markers of coagulation activation, including D-dimer, were not different between the CAP groups. Ferritin was most increased in COVID-19, while other systemic inflammation biomarkers such as IL-6 and procalcitonin were highest in CAP-strep. Immune checkpoint markers showed distinctive patterns in viral and non-viral CAP, with highly elevated levels of Galectin-9 in COVID-19. INTERPRETATION: Our investigation provides insight into shared and distinct pathophysiological mechanisms in different aetiologies of CAP, which may help guide new pathogen-specific therapeutic strategies. FUNDING: This study was financially supported by the Dutch Research Council, the European Commission and the Netherlands Organization for Health Research and Development.


Subject(s)
COVID-19 , Community-Acquired Infections , Influenza, Human , Pneumonia , Antiviral Agents , Biomarkers , Humans , Inflammation , Pneumonia/etiology , SARS-CoV-2 , Streptococcus pneumoniae
18.
Antibiotics (Basel) ; 11(2)2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35203819

ABSTRACT

The understanding of the gut microbiome in health and disease has shown tremendous progress in the last decade. Shaped and balanced throughout life, the gut microbiome is intricately related to the local and systemic immune system and a multitude of mechanisms through which the gut microbiome contributes to the host's defense against pathogens have been revealed. Similarly, a plethora of negative consequences, such as superinfections and an increased rate of hospital re-admissions, have been identified when the gut microbiome is disturbed by disease or by the iatrogenic effects of antibiotic treatment and other interventions. In this review, we describe the role that probiotics may play in the intensive care unit (ICU). We discuss what is known about the gut microbiome of the critically ill, and the concept of probiotic intervention to positively modulate the gut microbiome. We summarize the evidence derived from randomized clinical trials in this context, with a focus on the prevention of ventilator-associated pneumonia. Finally, we consider what lessons we can learn in terms of the current challenges, efficacy and safety of probiotics in the ICU and what we may expect from the future. Throughout the review, we highlight studies that have provided conceptual advances to the field or have revealed a specific mechanism; this narrative review is not intended as a comprehensive summary of the literature.

19.
J Infect Dis ; 225(11): 2023-2032, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35100411

ABSTRACT

BACKGROUND: Strongly elevated ferritin levels have been proposed to reflect systemic hyperinflammation in patients admitted to the intensive care unit. Knowledge of the incidence and pathophysiological implications of hyperferritinemia in patients with acute infection admitted to a non-intensive care setting is limited. METHODS: We determined the association between hyperferritinemia, defined by 2 cutoff values (500 and 250 ng/mL), and aberrations in key host response mechanisms among patients with community-acquired pneumonia (CAP) on admission to a general hospital ward (clinicaltrials.gov NCT02928367; trialregister.nl NTR6163). RESULTS: Plasma ferritin levels were higher in patients with CAP (n = 174; median [interquartile ranges], 259.5 [123.1-518.3] ng/mL) than in age- and sex-matched controls without infection (n = 50; 102.8 [53.5-185.7] ng/mL); P < .001); they were ≥500 ng/mL in 46 patients (26%) and ≥250 ng/mL in 90 (52%). Measurements of 26 biomarkers reflective of distinct pathophysiological domains showed that hyperferritinemia was associated with enhanced systemic inflammation, neutrophil activation, cytokine release, endothelial cell activation and dysfunction, and activation of the coagulation system. Results were robust across different cutoff values. CONCLUSIONS: Hyperferritinemia identifies patients with CAP with a broad deregulation of various host response mechanisms implicated in the pathogenesis of sepsis. This could inform future therapeutic strategies targeting subgroups within the CAP population.


Subject(s)
Community-Acquired Infections , Hyperferritinemia , Pneumonia , Ferritins , Humans , Intensive Care Units , Pneumonia/complications
20.
Semin Respir Crit Care Med ; 42(6): 759-770, 2021 12.
Article in English | MEDLINE | ID: mdl-34918319

ABSTRACT

Biomedical research has long strived to improve our understanding of the immune response to respiratory viral infections, an effort that has become all the more important as we live through the consequences of a pandemic. The disease course of these infections is shaped in large part by the actions of various cells of the innate and adaptive immune systems. While these cells are crucial in clearing viral pathogens and establishing long-term immunity, their effector mechanisms may also escalate into excessive, tissue-destructive inflammation detrimental to the host. In this review, we describe the breadth of the immune response to infection with respiratory viruses such as influenza and respiratory syncytial virus. Throughout, we focus on the host rather than the pathogen and try to describe shared patterns in the host response to different viruses. We start with the local cells of the airways, onto the recruitment and activation of innate and adaptive immune cells, followed by the establishment of local and systemic memory cells key in protection against reinfection. We end by exploring how respiratory viral infections can predispose to bacterial superinfection.


Subject(s)
Influenza, Human , Respiratory Syncytial Virus, Human , Humans , Immunity , Respiratory System
SELECTION OF CITATIONS
SEARCH DETAIL
...