Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 161
Filter
1.
Bone Rep ; 20: 101745, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38444830

ABSTRACT

Introduction: Fracture risk is elevated in type 2 diabetes (T2D) despite normal or even high bone mineral density (BMD). Microvascular disease (MVD) is a diabetic complication, but also associated with other diseases, for example chronic kidney disease. We hypothesize that increased fracture risk in T2D could be due to increased cortical porosity (Ct.Po) driven by expansion of the vascular network in MVD. The purpose of this study was to investigate associations of T2D and MVD with cortical microstructure and intracortical vessel parameters. Methods: The study group consisted of 75 participants (38 with T2D and 37 without T2D). High-resolution peripheral quantitative CT (HR-pQCT) and dynamic contrast-enhanced MRI (DCE-MRI) of the ultra-distal tibia were performed to assess cortical bone and intracortical vessels (outcomes). MVD was defined as ≥1 manifestation including neuropathy, nephropathy, or retinopathy based on clinical exams in all participants. Adjusted means of outcomes were compared between groups with/without T2D or between participants with/without MVD in both groups using linear regression models adjusting for age, sex, BMI, and T2D as applicable. Results: MVD was found in 21 (55 %) participants with T2D and in 9 (24 %) participants without T2D. In T2D, cortical pore diameter (Ct.Po.Dm) and diameter distribution (Ct.Po.Dm.SD) were significantly higher by 14.6 µm (3.6 %, 95 % confidence interval [CI]: 2.70, 26.5 µm, p = 0.017) and by 8.73 µm (4.8 %, CI: 0.79, 16.7 µm, p = 0.032), respectively. In MVD, but not in T2D, cortical porosity was significantly higher by 2.25 % (relative increase = 12.9 %, CI: 0.53, 3.97 %, p = 0.011) and cortical BMD (Ct.BMD) was significantly lower by -43.6 mg/cm3 (2.6 %, CI: -77.4, -9.81 mg/cm3, p = 0.012). In T2D, vessel volume and vessel diameter were significantly higher by 0.02 mm3 (13.3 %, CI: 0.004, 0.04 mm3, p = 0.017) and 15.4 µm (2.9 %, CI: 0.42, 30.4 µm, p = 0.044), respectively. In MVD, vessel density was significantly higher by 0.11 mm-3 (17.8 %, CI: 0.01, 0.21 mm-3, p = 0.033) and vessel volume and diameter were significantly lower by -0.02 mm3 (13.7 %, CI: -0.04, -0.004 mm3, p = 0.015) and - 14.6 µm (2.8 %, CI: -29.1, -0.11 µm, p = 0.048), respectively. Conclusions: The presence of MVD, rather than T2D, was associated with increased cortical porosity. Increased porosity in MVD was coupled with a larger number of smaller vessels, which could indicate upregulation of neovascularization triggered by ischemia. It is unclear why higher variability and average diameters of pores in T2D were accompanied by larger vessels.

2.
Article in English | MEDLINE | ID: mdl-38407631

ABSTRACT

CONTEXT: Type 2 diabetes mellitus (T2D) is associated with more rapid bone loss in women, but less evidence is available for men or those with prediabetes. OBJECTIVE: To determine whether bone loss rate is affected by diabetes status in older men, we analyzed data from the Osteoporotic Fractures in Men (MrOS) study. METHODS: The multisite MrOS study enrolled 5,994 men aged ≥65 years. Diabetes status was defined by self-report, diabetes medication use, or elevated fasting serum glucose at baseline. Hip bone mineral density (BMD) was measured by dual energy x-ray absorptiometry (DXA) at baseline and a follow-up visit after 4.6 ± 0.4 years. This analysis included 4095 men, excluding those without a follow-up DXA or with unknown diabetes status. Changes in hip BMD in participants with normoglycemia (NG), prediabetes, or T2D, excluding thiazolidinedione (TZD) users, were evaluated using generalized linear models (GLM). Diabetes medication use and BMD loss among those with T2D were also evaluated with GLM. RESULTS: In adjusted models, loss in hip BMD was greater in men with T2D (- 2.23%: 95% CI: -2.54 to -1.91; p<0.001) but not in men with prediabetes (-1.45%; 95% CI -1.63 to -1.26; p=0.33) compared to NG (-1.57%: 95% CI -1.73 to -1.41). Among men with T2D, TZD, insulin and sulfonylurea use were associated with greater hip BMD loss. CONCLUSIONS: Men with T2D, but not prediabetes, experienced an accelerated bone loss compared to participants with normoglycemia. More rapid bone loss predicts increased risk of fractures and mortality in broader populations.

3.
Diabetes Care ; 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38029518

ABSTRACT

OBJECTIVE: To determine whether type 1 diabetes and its complications are associated with bone geometry and microarchitecture. RESEARCH DESIGN AND METHODS: This cross-sectional study was embedded in a long-term observational study. High-resolution peripheral quantitative computed tomography (HR-pQCT) scans of the distal radius and distal and diaphyseal tibia were performed in a subset of 183 participants with type 1 diabetes from the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) study and 94 control participants without diabetes. HbA1c, skin advanced glycation end products (AGEs), and diabetes-related complications were assessed in EDIC participants with >30 years of follow-up. RESULTS: Compared with control participants (aged 60 ± 8 years, 65% female), EDIC participants (aged 60 ± 7 years, diabetes duration 38 ± 5 years, 51% female) had lower total bone mineral density (BMD) at the distal radius (-7.9% [95% CI -15.2%, -0.6%]; P = 0.030) and distal tibia (-11.3% [95% CI -18.5%, -4.2%]; P = 0.001); larger total area at all sites (distal radius 4.7% [95% CI 0.5%, 8.8%; P = 0.030]; distal tibia 5.9% [95% CI 2.1%, 9.8%; P = 0.003]; diaphyseal tibia 3.4% [95% CI 0.8%, 6.1%; P = 0.011]); and poorer radius trabecular and cortical microarchitecture. Estimated failure load was similar between the two groups. Among EDIC participants, higher HbA1c, AGE levels, and macroalbuminuria were associated with lower total BMD. Macroalbuminuria was associated with larger total area and lower cortical thickness at the distal radius. Higher HbA1c and AGE levels and lower glomerular filtration rate, peripheral neuropathy, and retinopathy were associated with deficits in trabecular microarchitecture. CONCLUSIONS: Type 1 diabetes is associated with lower BMD, larger bone area, and poorer trabecular microarchitecture. Among participants with type 1 diabetes, suboptimal glycemic control, AGE accumulation, and microvascular complications are associated with deficits in bone microarchitecture and lower BMD.

4.
J Bone Miner Res ; 38(12): 1877-1884, 2023 12.
Article in English | MEDLINE | ID: mdl-37904318

ABSTRACT

Type 2 diabetes (T2D) has negative effects on skeletal health. A proposed mechanism of diabetic bone disease connects hyperlipidemia to increased bone marrow adiposity and decreased bone quality. Previous research on Type 1 diabetes reported positive associations between serum lipid levels and marrow adiposity, but no data exist for T2D. In addition, marrow adiposity is sex-dependent in healthy populations, but sex has not been addressed adequately in previous reports of marrow adiposity in T2D. The purpose of this study was to quantify associations of marrow adiposity and composition with T2D status, serum lipid levels, and sex. T2D patients and normoglycemic controls (n = 39/37) were included. Single-voxel magnetic resonance spectroscopy (MRS) was performed at the spine and tibia. Quantitative MRS outcomes of marrow adiposity and composition were calculated. Linear regression models were used to compare MRS outcomes among groups and to evaluate associations of MRS outcomes with serum lipid levels. All analyses were performed on sex-stratified subgroups. Total, unsaturated, and saturated fat content at the spine were lower in T2D participants compared to controls in age-adjusted models; these differences were significant in men but not in women. In our study cohort, total cholesterol, low-density lipoprotein (LDL), and high-density lipoprotein (HDL) were lower in T2D participants compared to controls. Adjustment for LDL, HDL, and statin use attenuated the association of T2D status with unsaturated fat but not saturated fat in men. Further analysis confirmed significant associations between serum lipid levels and MRS outcomes. Specifically, we found a positive association between LDL cholesterol and total marrow fat in the male T2D group and a negative association between HDL and total marrow fat in the female T2D group. In conclusion, our results suggest that marrow adiposity and composition are associated with lipid levels as well as T2D status, and these relationships are sex-specific. © 2023 American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Humans , Male , Female , Bone Marrow , Adiposity , Obesity , Lipids
5.
Arch Osteoporos ; 18(1): 97, 2023 07 14.
Article in English | MEDLINE | ID: mdl-37452151

ABSTRACT

Intentional weight loss has been shown to increase bone loss short term but the long-term effects are not known. Data from the Look AHEAD clinical trial shows that a long term intentional weight loss intervention was associated with greater bone loss at the hip in men. PURPOSE: Intentional weight loss has been shown to increase bone loss short term and increase frailty fracture risk, but the long-term effects on bone mineral density (BMD) are not known. METHODS: Data from a subgroup from the Look AHEAD (LA) multicenter, randomized clinical trial was used to evaluate whether a long term intentional weight loss intervention would increase bone loss. In a preplanned substudy, BMD was assessed at 5 of the 16 LA clinical centers using dual-energy X-ray absorptiometry at baseline, year 8, and the observational visit 12.6-16.3 years after randomization (year 12-16). RESULTS: At year 8, bone density loss (%) was greater in the Intensive Lifestyle Intervention (ILI) group compared with the control group (DSE) for the femoral neck (p = 0.0122) but this finding was not observed at the year 12-16 visit. In analyses stratified by gender, bone density loss (%) was greater at the total hip for men in the ILI group than the DSE group at both the year 8 and year 12-16 visits (year 8 p = 0.0263 and year 12-16 p = 0.0062). This finding was not observed among women. CONCLUSION: Long term intentional weight loss was associated with greater bone loss at the hip in men. These results taken with the previously published Look AHEAD data from the entire clinical trial showing increased frailty fracture risk with weight loss in the ILI group suggest that when intentional weight loss is planned, consideration of bone density preservation and fracture prevention strategies is warranted. TRIAL REGISTRATION: Clinicaltrials.gov Identifier: NCT00017953. June 21, 2001.


Subject(s)
Diabetes Mellitus, Type 2 , Fractures, Bone , Frailty , Male , Humans , Female , Diabetes Mellitus, Type 2/therapy , Diabetes Mellitus, Type 2/complications , Bone Density , Fractures, Bone/complications , Life Style , Weight Loss
6.
J Bone Miner Res ; 37(11): 2121-2131, 2022 11.
Article in English | MEDLINE | ID: mdl-36065588

ABSTRACT

Type 2 diabetes (T2D) is associated with increased risk of fractures. However, it is unclear whether current osteoporosis treatments reduce fractures in individuals with diabetes. The aim of the study was to determine whether presence of T2D influences the efficacy of antiresorptive treatment for osteoporosis using the Foundation for the National Institutes of Health (FNIH)-American Society for Bone and Mineral Research (ASBMR)-Study to Advance Bone Mineral Density (BMD) as a Regulatory Endpoint (SABRE) cohort, which includes individual patient data from randomized trials of osteoporosis therapies. In this study we included 96,385 subjects, 6.8% of whom had T2D, from nine bisphosphonate trials, two selective estrogen receptor modulator (SERM) trials, two trials of menopausal hormone therapy, one denosumab trial, and one odanacatib trial. We used Cox regression to obtain the treatment hazard ratio (HR) for incident nonvertebral, hip, and all fractures and logistic regression to obtain the treatment odds ratio (OR) for incident morphometric vertebral fractures, separately for T2D and non-DM. We used linear regression to estimate the effect of treatment on 2-year change in BMD (n = 49,099) and 3-month to 12-month change in bone turnover markers (n = 12,701) by diabetes status. In all analyses, we assessed the interaction between treatment and diabetes status. In pooled analyses of all 15 trials, we found that diabetes did not impact treatment efficacy, with similar reductions in vertebral, nonvertebral, all, and hip fractures, increases in total hip and femoral neck BMD, and reductions in serum C-terminal cross-linking telopeptide (CTX), urinary N-telopeptide of type I collagen/creatinine (NTX/Cr) and procollagen type 1 N propeptide (P1NP) (all interactions p > 0.05). We found similar results for the pooled analysis of bisphosphonate trials. However, when we considered trials individually, we found a few interactions within individual studies between diabetes status and the effects of denosumab and odanacatib on fracture risk, change in BMD or bone turnover markers (BTMs). In sum, these results provide strong evidence that bisphosphonates and most licensed antiresorptive drugs are effective at reducing fracture risk and increasing BMD irrespective of diabetes status. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Bone Density Conservation Agents , Diabetes Mellitus, Type 2 , Hip Fractures , Osteoporosis , Humans , Bone Density , Bone Density Conservation Agents/therapeutic use , Denosumab/therapeutic use , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diphosphonates/therapeutic use , Hip Fractures/drug therapy , Osteoporosis/drug therapy
7.
Bone Rep ; 17: 101596, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35734226

ABSTRACT

Fracture risk is increased in type 2 diabetes, which may in part be due to altered bone marrow adiposity. Cross sectional studies have reported that people with type 2 diabetes have lower unsaturated BMAT lipid levels than people without diabetes, although there are limited data on longitudinal changes. We hypothesized that Roux-en-Y gastric bypass (RYGB), which dramatically improves glycemic status, would have differential effects on BMAT composition, with increases in the unsaturated lipid index in people with diabetes. Given reports that axial BMAT is responsive to metabolic stimuli while appendicular BMAT is stable, we hypothesized that BMAT changes would occur at the spine but not the tibia. We enrolled 30 obese women, stratified by diabetes status, and used magnetic resonance spectroscopy to measure BMAT at the spine in all participants, and the tibia in a subset (n = 19). At baseline, BMAT parameters were similar between those with and without diabetes, except tibial marrow fat content was lower in women with diabetes (97.4 % ± 1.0 % versus 98.2 % ± 0.4 %, p = 0.04). Six months after surgery, both groups experienced similar weight loss of 27 kg ± 7 kg. At the spine, there was a significant interaction between diabetes status and changes in both marrow fat content and the unsaturated lipid index (p = 0.02, p < 0.01 for differences, respectively). Women with diabetes had a trend towards a decline in marrow fat content (-4.3 % ± 8.2 %, p = 0.09) and increase in the unsaturated lipid index (+1.1 % ± 1.5 %, p = 0.02). In contrast, BMAT parameters did not significantly change in women without diabetes. In all women, changes in the unsaturated lipid index inversely correlated with hemoglobin A1c changes (r = -0.47, p = 0.02). At the tibia, there was little BMAT change by diabetes status. Our results suggest that vertebral BMAT composition is responsive to changes in glycemic control after RYGB.

8.
Lancet Diabetes Endocrinol ; 10(7): 509-518, 2022 07.
Article in English | MEDLINE | ID: mdl-35576955

ABSTRACT

BACKGROUND: Type 1 diabetes is associated with lower bone mineral density (BMD) and increased fracture risk, but little is known regarding the effects of diabetes-related factors on BMD. We assessed whether these factors are associated with lower hip BMD among older adults with type 1 diabetes. METHODS: This cross-sectional study was embedded in a long-term observational study, the Epidemiology of Diabetes Interventions and Complications study (EDIC), a cohort of participants with type 1 diabetes, who were originally enrolled in the Diabetes Control and Complications Trial (DCCT), and were followed-up for more than 30 years at 27 sites in the USA and Canada. All active EDIC participants were eligible except if they were pregnant, weighed above the dual-energy x-ray absorptiometry (DXA) scanner limit, had an implanted neurostimulator, or were not willing to participate. The primary study outcome was total hip BMD. Hip, spine, and radius BMD and trabecular bone score (TBS) were measured with DXA at an annual EDIC visit (2017-19). Time-weighted mean HbA1c, kidney disease, and peripheral neuropathy were measured annually during EDIC, and retinopathy was measured every 4 years. Skin intrinsic fluorescence, a measure of advanced glycation end products (AGEs), and cardiac autonomic neuropathy were assessed once (2009-10) during EDIC. FINDINGS: 1147 of the 1441 participants who were enrolled in the DCCT trial remained active EDIC participants at the start of this cross-sectional study. Between Sept 20, 2017, and Sept 19, 2019, 1094 of 1147 participants were screened for the EDIC Skeletal Health study. 1058 participants completed at least one of a set of DXA scans and were included in the analysis. 47·8% were women and 52·2% were men, 96·6% were White and 3·4% were of other race or ethnicity. The mean age of participants was 59·2 years (SD 6·7). Higher mean HbA1c, higher skin intrinsic fluorescence, and kidney disease (but not retinopathy or neuropathy) were independently associated with a lower total hip BMD. Total hip BMD differed by -10·7 mg/cm2 (95% CI -19·6 to -1·7) for each 1% increase in mean HbA1c, -20·5 mg/cm2 (-29·9 to -11·0) for each 5 unit higher skin intrinsic fluorescence, and -51·7 mg/cm2 (-80·6 to -22·7) in the presence of kidney disease. Similar associations were found for femoral neck and ultra-distal radius BMD, but not for lumbar spine BMD or TBS. INTERPRETATION: Poorer glycaemic control, AGE accumulation, and kidney disease are independent risk factors for lower hip BMD in older adults with type 1 diabetes. Maintenance of glycaemic control and prevention of kidney disease might reduce bone loss and ultimately fractures in this population. Osteoporosis screening might be particularly important in people with these risk factors. Further research to identify AGE blockers could benefit skeletal health. FUNDING: National Institute of Diabetes and Digestive and Kidney Disease.


Subject(s)
Diabetes Mellitus, Type 1 , Osteoporotic Fractures , Absorptiometry, Photon , Aged , Bone Density , Cross-Sectional Studies , Diabetes Mellitus, Type 1/complications , Female , Humans , Lumbar Vertebrae , Male , Middle Aged , Osteoporotic Fractures/epidemiology , Risk Factors
9.
J Clin Endocrinol Metab ; 107(6): e2405-e2416, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35188961

ABSTRACT

CONTEXT: Type 1 diabetes (T1D) is characterized by high fracture risk, yet little is known regarding diabetes-related mechanisms or risk factors. OBJECTIVE: Determine whether glycemic control, advanced glycation end products (AGEs), and microvascular complications are associated with bone turnover markers among older T1D adults. DESIGN: Cross-sectional. SETTING: Epidemiology of Diabetes Interventions and Complications study (6 of 27 clinical centers). PARTICIPANTS: 232 T1D participants followed for >30 years. EXPOSURES: Glycemic control ascertained as concurrent and cumulative hemoglobin A1c (HbA1c); kidney function, by estimated glomerular filtration rates (eGFR); and AGEs, by skin intrinsic fluorescence. MAIN OUTCOME MEASURES: Serum procollagen 1 intact N-terminal propeptide (PINP), bone-specific alkaline phosphatase (bone ALP), serum C-telopeptide (sCTX), tartrate-resistant acid phosphatase 5b (TRACP5b), and sclerostin. RESULTS: Mean age was 59.6 ±â€…6.8 years, and 48% were female. In models with HbA1c, eGFR, and AGEs, adjusted for age and sex, higher concurrent HbA1c was associated with lower PINP [ß -3.4 pg/mL (95% CI -6.1, -0.7), P = 0.015 for each 1% higher HbA1c]. Lower eGFR was associated with higher PINP [6.9 pg/mL (95% CI 3.8, 10.0), P < 0.0001 for each -20 mL/min/1.73 m2 eGFR], bone ALP [1.0 U/L (95% CI 0.2, 1.9), P = 0.011], sCTX [53.6 pg/mL (95% CI 32.6, 74.6), P < 0.0001], and TRACP5b [0.3 U/L (95% CI 0.1, 0.4), P = 0.002]. However, AGEs were not associated with any bone turnover markers in adjusted models. HbA1c, eGFR, and AGEs were not associated with sclerostin levels. CONCLUSIONS: Among older adults with T1D, poor glycemic control is a risk factor for reduced bone formation, while reduced kidney function is a risk factor for increased bone resorption and formation.


Subject(s)
Diabetes Mellitus, Type 1 , Aged , Alkaline Phosphatase , Biomarkers , Bone Remodeling , Cross-Sectional Studies , Diabetes Mellitus, Type 1/complications , Female , Glycated Hemoglobin , Humans , Male , Middle Aged
10.
J Bone Miner Res ; 37(5): 876-884, 2022 05.
Article in English | MEDLINE | ID: mdl-35118705

ABSTRACT

Mouse models suggest that undercarboxylated osteocalcin (ucOC), produced by the skeleton, protects against type 2 diabetes development, whereas human studies have been inconclusive. We aimed to determine if ucOC or total OC is associated with incident type 2 diabetes or changes in fasting glucose, insulin resistance (HOMA-IR), or beta-cell function (HOMA-Beta). A subcohort (n = 338; 50% women; 36% black) was identified from participants without diabetes at baseline in the Health, Aging, and Body Composition Study. Cases of incident type 2 diabetes (n = 137) were defined as self-report at an annual follow-up visit, use of diabetes medication, or elevated fasting glucose during 8 years of follow-up. ucOC and total OC were measured in baseline serum. Using a case-cohort design, the association between biomarkers and incident type 2 diabetes was assessed using robust weighted Cox regression. In the subcohort, linear regression models analyzed the associations between biomarkers and changes in fasting glucose, HOMA-IR, and HOMA-Beta over 9 years. Higher levels of ucOC were not statistically associated with increased risk of incident type 2 diabetes (adjusted hazard ratio = 1.06 [95% confidence interval, 0.84-1.34] per 1 standard deviation [SD] increase in ucOC). Results for %ucOC and total OC were similar. Adjusted associations of ucOC, %ucOC, and total OC with changes in fasting glucose, HOMA-IR, and HOMA-Beta were modest and not statistically significant. We did not find evidence of an association of baseline undercarboxylated or total osteocalcin with risk of incident type 2 diabetes or with changes in glucose metabolism in older adults. © 2022 American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Osteocalcin , Aged , Animals , Biomarkers/metabolism , Diabetes Mellitus, Type 2/metabolism , Female , Glucose/metabolism , Humans , Male , Mice , Osteocalcin/metabolism
11.
J Bone Miner Res ; 37(4): 700-710, 2022 04.
Article in English | MEDLINE | ID: mdl-35038186

ABSTRACT

Greater bone marrow adiposity (BMAT) is associated with lower bone mineral density (BMD) and vertebral fractures; less is known about BMAT composition and bone. We studied BMAT composition and bone outcomes in 465 participants from the Age Gene/Environment Susceptibility (AGES)-Reykjavik study. BMAT saturation and unsaturation, measured with magnetic resonance spectroscopy, were defined as the ratio of saturated (1.3 ppm peak) or unsaturated (5.3 ppm peak) lipid to total marrow contents, respectively. At baseline and follow-up visits, spine and hip BMD were assessed with quantitative computed tomography (QCT) and dual-energy X-ray absorptiometry (DXA) and vertebral fractures were identified with DXA. Incident clinical fractures were identified through medical records for up to 8.8 years of follow-up. Associations between BMAT composition and BMD, bone loss, and fractures were evaluated in adjusted regression models. At baseline, mean ± standard deviation (SD) participant age was 81.7 ± 4.3 years, mean BMAT unsaturation was 3.5% ± 1.0%, and mean saturation was 46.3% ± 7.2% in the full cohort (47.7% women). Each SD increase in BMAT saturation was associated with lower trabecular BMD: -23.6% (spine) and -13.0% (total hip) (all p < 0.0001). Conversely, BMAT unsaturation (per SD increase) was associated with higher trabecular BMD: +17.5% (spine) and +11.5% (total hip) (all p < 0.001). BMAT saturation (per SD increase) was associated with greater risk for prevalent (odds ratio [OR] 1.46; 95% confidence interval [CI], 1.11-1.92) and incident (OR 1.55; 95% CI, 1.03-2.34) vertebral fracture. BMAT unsaturation (per SD increase) was associated with lower risk for incident vertebral fracture (OR 0.58; 95% CI, 0.38-0.89). In gender stratified analyses, BMAT saturation and unsaturation had opposite associations with incident clinical fracture among men. In general, saturated marrow lipids were associated with worse skeletal outcomes, whereas unsaturated lipids were associated with better outcomes. We recommend that future studies of marrow fat and skeletal health report measurements of saturated and unsaturated marrow lipids, rather than total marrow fat content alone. © 2022 American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Fractures, Bone , Spinal Fractures , Absorptiometry, Photon , Aged , Aged, 80 and over , Bone Density , Bone Marrow , Female , Fractures, Bone/diagnostic imaging , Fractures, Bone/epidemiology , Humans , Lipids , Male , Spinal Fractures/diagnostic imaging , Spinal Fractures/epidemiology
12.
Bone ; 158: 116308, 2022 05.
Article in English | MEDLINE | ID: mdl-35066213

ABSTRACT

Fragility fractures are an important hallmark of aging and an increasingly recognized complication of Type 2 diabetes (T2D). T2D individuals have been found to exhibit an increased fracture risk despite elevated bone mineral density (BMD) by dual x-ray absorptiometry (DXA). However, BMD and FRAX-scores tend to underestimate fracture risk in T2D. New, reliable biomarkers are therefore needed. MicroRNAs (miRNAs) are secreted into the circulation from cells of various tissues proportional to local disease severity. Serum miRNA-classifiers were recently found to discriminate T2D women with and without prevalent fragility fractures with high specificity and sensitivity (AUC > 0.90). However, the association of circulating miRNAs with incident fractures in T2D has not been examined yet. In 168 T2D postmenopausal women in the AGES-Reykjavik cohort, miRNAs were extracted from baseline serum and a panel of 10 circulating miRNAs known to be involved in diabetic bone disease and aging was quantified by qPCR and Ct-values extracted. Unadjusted and adjusted Cox proportional hazard models assessed the associations between serum miRNAs and incident fragility fracture. Additionally, Receiver operating curve (ROC) analyses were performed. Of the included 168 T2D postmenopausal women who were on average 77.2 ±â€¯5.6 years old, 70 experienced at least one incident fragility fracture during the mean follow-up of 5.8 ±â€¯2.7 years. We found that 3 serum miRNAs were significantly associated with incident diabetic fragility fracture: while low expression of miR-19b-1-5p was associated with significantly lower risk of incident fragility fracture (HR 0.84 (95% CI: 0.71-0.99, p = 0.0323)), low expression of miR-203a and miR-31-5p was each significantly associated with a higher risk of incident fragility fracture per unit increase in Ct-value (miR-203a: HR 1.29 (95% CI: 1.12-1.49), p = 0.0004, miR-31-5p HR 1.27 (95% CI: 1.06-1.52), p = 0.009). Hazard ratios of the latter two miRNAs remained significant after adjustments for age, body mass index (BMI), areal bone mineral density (aBMD), clinical FRAX or FRAXaBMD. Women with miR-203a and miR-31-5p serum levels in the lowest expression quartiles exhibited a 2.4-3.4-fold larger fracture risk than women with miR-31-5p and miR-203a serum expressions in the highest expression quartile (0.002 ≤ p ≤ 0.039). Women with both miR-203a and miR-31-5p serum levels below the median had a significantly increased fracture risk (Unadjusted HR 3.26 (95% CI: 1.57-6.78, p = 0.001) compared to those with both expression levels above the median, stable to adjustments. We next built a diabetic fragility signature consisting of the 3 miRNAs that showed the largest associations with incident fracture (miR-203a, miR-31-5p, miR-19b-1-5p). This 3-miRNA signature showed with an AUC of 0.722 comparable diagnostic accuracy in identifying incident fractures to any of the clinical parameters such as aBMD, Clinical FRAX or FRAXaBMD alone. When the 3 miRNAs were combined with aBMD, this combined 4-feature signature performed with an AUC of 0.756 (95% CI: 0.680, 0.823) significantly better than aBMD alone (AUC 0.666, 95% CI: 0.585, 0.741) (p = 0.009). Our data indicate that specific serum microRNAs including senescent miR-31-5p are associated with incident fragility fracture in older diabetic women and can significantly improve fracture risk prediction in diabetics when combined with aBMD measurements of the femoral neck.


Subject(s)
Circulating MicroRNA , Diabetes Mellitus, Type 2 , MicroRNAs , Osteoporotic Fractures , Absorptiometry, Photon , Aged , Aged, 80 and over , Bone Density/genetics , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/genetics , Female , Humans , MicroRNAs/blood , MicroRNAs/genetics , Osteoporotic Fractures/blood , Osteoporotic Fractures/genetics , Postmenopause
13.
J Bone Miner Res ; 37(2): 265-272, 2022 02.
Article in English | MEDLINE | ID: mdl-34820902

ABSTRACT

Accumulation of advanced glycation end-products (AGE) in bone alters collagen structure and function. Fluorescent AGEs are associated with fractures but less is known regarding non-fluorescent AGEs. We examined associations of carboxy-methyl-lysine (CML), with incident clinical and prevalent vertebral fractures by type 2 diabetes (T2D) status, in the Health, Aging, and Body Composition cohort of older adults. Incident clinical fractures and baseline vertebral fractures were assessed. Cox regression was used to analyze the associations between serum CML and clinical fracture incidence, and logistic regression for vertebral fracture prevalence. At baseline, mean ± standard deviation (SD) age was 73.7 ± 2.8 and 73.6 ± 2.9 years in T2D (n = 712) and non-diabetes (n = 2332), respectively. Baseline CML levels were higher in T2D than non-diabetes (893 ± 332 versus 771 ± 270 ng/mL, p < 0.0001). In multivariate models, greater CML was associated with higher risk of incident clinical fracture in T2D (hazard ratio [HR] 1.49; 95% confidence interval [CI], 1.24-1.79 per 1-SD increase in log CML) but not in non-diabetes (HR 1.03; 95% CI, 0.94-1.13; p for interaction = 0.001). This association was independent of bone mineral density (BMD), glycated hemoglobin (hemoglobin A1c), weight, weight loss, smoking, cystatin-C, and medication use. CML was not significantly associated with the odds of prevalent vertebral fractures in either group. In conclusion, higher CML levels are associated with increased risk of incident clinical fractures in T2D, independent of BMD. These results implicate CML in the pathogenesis of bone fragility in diabetes. © 2021 American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Diabetes Mellitus, Type 2 , Fractures, Bone , Spinal Fractures , Aged , Bone Density , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/epidemiology , Fractures, Bone/complications , Fractures, Bone/epidemiology , Humans , Lysine , Risk Factors , Spinal Fractures/etiology
14.
J Clin Endocrinol Metab ; 106(10): 2876-2889, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34212197

ABSTRACT

CONTEXT: FSH may have independent actions on bone remodeling and body fat regulation. Cross-sectionally, we have shown that serum FSH is associated with bone mineral density (BMD) and body fat in older postmenopausal women, but it remains unknown whether FSH predicts bone and fat changes. OBJECTIVE: We examined whether baseline FSH level is associated with subsequent bone loss or body composition changes in older adults. SETTING, DESIGN, PARTICIPANTS: We studied 162 women and 158 men (mean age 82 ± 4 years) from the Age, Gene/Environment Susceptibility (AGES)-Bone Marrow Adiposity cohort, a substudy of the AGES-Reykjavik Study of community-dwelling older adults. Skeletal health and body composition were characterized at baseline and 3 years later. MAIN OUTCOMES: Annualized change in BMD and body composition by dual-energy X-ray absorptiometry (DXA) and quantitative computed tomography (QCT). Models were adjusted for serum estradiol and testosterone levels. RESULTS: There was no evidence for an association between baseline FSH level and change in BMD or body composition by DXA or QCT. For femoral neck areal BMD, adjusted mean difference (95% CI) per SD increase in FSH was 1.3 (-0.7 to 3.3) mg/cm2/y in women, and -0.2 (-2.6 to 2.2) mg/cm2/y in men. For visceral fat, adjusted mean difference (95% CI) per SD increase in FSH was 1.80 (-0.03 to 3.62) cm2/y in women, and -0.33 (-3.73 to 3.06) cm2/y in men. CONCLUSIONS: Although cross-sectional studies and studies in perimenopausal women have demonstrated associations between FSH and BMD and body composition, in older adults, FSH level is not associated with bone mass or body composition changes.


Subject(s)
Adipose Tissue/metabolism , Body Composition , Bone Density , Bone Diseases, Metabolic/blood , Follicle Stimulating Hormone/blood , Absorptiometry, Photon , Aged, 80 and over , Bone Diseases, Metabolic/diagnostic imaging , Female , Femur Neck/diagnostic imaging , Humans , Male
16.
J Clin Endocrinol Metab ; 106(3): e1156-e1169, 2021 03 08.
Article in English | MEDLINE | ID: mdl-33326040

ABSTRACT

CONTEXT: Follicle-stimulating hormone (FSH) concentrations increase during the perimenopausal transition and remain high after menopause. Loss of bone mineral density (BMD) and gain of bone marrow adiposity (BMA) and body fat mass also occur during this time. In mice, blocking the action of FSH increases bone mass and decreases fat mass. OBJECTIVE: To investigate the associations between endogenous FSH levels and BMD, BMA, and body composition in older adults, independent of estradiol and testosterone levels. DESIGN, SETTING, AND PARTICIPANTS: Older adults from the AGES-Reykjavik Study, an observational cohort study. MAIN OUTCOME MEASURES: Areal BMD, total body fat, and lean mass were measured with dual-energy x-ray absorptiometry. Lumbar vertebral BMA was measured by 1H-magnetic resonance spectroscopy. Volumetric BMD and visceral and subcutaneous adipose tissue (VAT, SAT) areas were measured with quantitative computed tomography. The least squares means procedure was used to determine sex hormone-adjusted associations between quartiles of serum FSH and BMD, BMA, and body composition. RESULTS: In women (N = 238, mean age 81 years), those in the highest FSH quartile, compared with the lowest quartile, had lower adjusted mean spine integral BMD (-8.6%), lower spine compressive strength index (-34.8%), higher BMA (+8.4%), lower weight (-8.4%), lower VAT (-17.6%), lower lean mass (-6.1%), and lower fat mass (-11.9%) (all P < 0.05). In men, FSH level was not associated with any outcome. CONCLUSIONS: Older postmenopausal women with higher FSH levels have higher BMA, but lower BMD and lower fat and lean mass, independent of estradiol and testosterone levels. Longitudinal studies are needed to better understand the underlying mechanisms.


Subject(s)
Body Composition/physiology , Bone Density/physiology , Bone Marrow/metabolism , Follicle Stimulating Hormone/blood , Adiposity/physiology , Aged , Aged, 80 and over , Aging/blood , Aging/metabolism , Cohort Studies , Cross-Sectional Studies , Female , Humans , Iceland , Lipid Metabolism/physiology , Longitudinal Studies , Male
17.
J Bone Miner Res ; 35(12): 2363-2371, 2020 12.
Article in English | MEDLINE | ID: mdl-32717111

ABSTRACT

Type 2 diabetes (T2D) is characterized by increased fracture risk despite higher BMD and reduced bone turnover. BMD underestimates fracture risk in T2D, but the predictive role of bone turnover markers (BTMs) on fracture risk in T2D has not been explored. Thus, we sought to determine whether BTMs predict incident fractures in subjects with T2D. For this case-cohort study, we used data from the Health, Aging, and Body Composition (Health ABC) Study of well-functioning older adults, aged 70 to 79 years at baseline (April 1997-June 1998). The case-cohort sample consisted of (i) the cases, composed of all 223 participants who experienced incident fractures of the hip, clinical spine, or distal forearm within the first 9 years of study follow-up; and (ii) the subcohort of 508 randomly sampled participants from three strata at baseline (T2D, prediabetes, and normoglycemia) from the entire Health ABC cohort. A total of 690 subjects (223 cases, of whom 41 were in the subcohort) were included in analyses. BTMs (C-terminal telopeptide of type I collagen [CTX], osteocalcin [OC], and procollagen type 1 N-terminal propeptide [P1NP]) were measured in archived baseline serum. Cox regression with robust variance estimation was used to estimate the adjusted hazard ratio (HR) for fracture per 20% increase in BTMs. In nondiabetes (prediabetes plus normoglycemia), fracture risk was increased with higher CTX (HR 1.10; 95% confidence interval [CI], 1.01 to 1.20 for each 20% increase in CTX). Risk was not increased in T2D (HR 0.92; 95% CI, 0.81 to 1.04; p for interaction .045). Similarly, both OC and P1NP were associated with higher risk of fracture in nondiabetes, but not in T2D, with p for interaction of .078 and .109, respectively. In conclusion, BTMs did not predict incident fracture risk in T2D but were modestly associated with fracture risk in nondiabetes. © 2020 American Society for Bone and Mineral Research.


Subject(s)
Bone Remodeling , Diabetes Mellitus, Type 2 , Fractures, Bone/epidemiology , Aged , Biomarkers , Bone Density , Cohort Studies , Collagen Type I , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/epidemiology , Humans , Peptide Fragments , Peptides , Procollagen
18.
J Endocr Soc ; 4(5): bvz032, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32405607

ABSTRACT

CONTEXT: αKlotho is a hormone and co-receptor for fibroblast growth factor 23 (FGF23), a hormone that downregulates active vitamin D synthesis and promotes phosphate excretion. Low αKlotho and high FGF23 occur in chronic kidney disease (CKD). OBJECTIVE: We aimed to assess the relationships of αKlotho and FGF23 with mobility disability in community-dwelling older adults. DESIGN AND SETTING: We estimated associations of plasma-soluble αKlotho and serum FGF23 concentrations with mobility disability over 6 years. Additional analyses was stratified by CKD. PARTICIPANTS: Participants included 2751 adults (25.0% with CKD), aged 71 to 80 years, from the 1998 to 1999 Health, Aging, and Body Composition Study visit. MAIN OUTCOME MEASURES: Walking disability and stair climb disability were defined as self-reported "a lot of difficulty" or an inability to walk a quarter mile and climb 10 stairs, respectively. RESULTS: Median (interquartile range [IQR]) serum FGF23 and plasma soluble αKlotho concentrations were 46.6 (36.7, 60.2) pg/mL and 630.4 (478.4, 816.0) pg/mL, respectively. After adjustment, higher αKlotho concentrations were associated with lower walking disability rates (Rate Ratio [RR] highest vs. lowest tertile = 0.74; 95% confidence interval l [CI] = 0.62, 0.89; P = 0.003). Higher FGF23 concentrations were associated with higher walking disability rates (RR highest vs. lowest tertile = 1.24; 95%CI = 1.03, 1.50; P = 0.005). Overall, higher αKlotho combined with lower FGF23 was associated with the lowest walking disability rates (P for interaction = 0.023). Stair climb disability findings were inconsistent. No interactions with CKD were statistically significant (P for interaction > 0.10). CONCLUSIONS: Higher plasma soluble αKlotho and lower serum FGF23 concentrations were associated with lower walking disability rates in community-dwelling older adults, particularly those without CKD.

19.
JBMR Plus ; 4(4): e10346, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32258965

ABSTRACT

Type 2 diabetes mellitus (T2DM) increases fracture risk despite normal or increased BMD. Abaloparatide reduces fracture risk in patients with postmenopausal osteoporosis (PMO); however, its efficacy in women with T2DM is unknown. This post hoc analysis evaluated the efficacy and safety of abaloparatide in patients with T2DM. The analysis included patients with T2DM from the Abaloparatide Comparator Trial In Vertebral Endpoints (ACTIVE), a phase 3, double-blind, randomized, placebo- and active-controlled trial. In ACTIVE, participants were randomized 1:1:1 to daily s.c. injections of placebo, abaloparatide (80 µg), or open-label teriparatide (20 µg) for 18 months. A total of 198 women with PMO and T2DM from 21 centers in 10 countries were identified from ACTIVE through review of their medical records. The main outcomes measured included effect of abaloparatide versus placebo on BMD and trabecular bone score (TBS), with secondary outcomes of fracture risk and safety, in patients from ACTIVE with T2DM. Significant (p < 0.001) improvements in BMD at total hip (mean change 3.0% versus -0.4%), femoral neck (2.6% versus -0.2%), and lumbar spine (8.9% versus 1.3%) and TBS at lumbar spine (3.72% versus -0.56%) were observed with abaloparatide versus placebo at 18 months. Fracture events were fewer with abaloparatide treatment in patients with T2DM, and differences were not significant between groups except nonvertebral fractures in the abaloparatide versus placebo groups (p = 0.04). Safety was consistent with the ACTIVE population. In conclusion, in women with PMO and T2DM, abaloparatide treatment resulted in significant improvements in BMD and TBS versus placebo, consistent with the overall ACTIVE population © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.

20.
Arthritis Rheumatol ; 72(7): 1103-1110, 2020 07.
Article in English | MEDLINE | ID: mdl-32039565

ABSTRACT

OBJECTIVE: Osteoarthritis (OA) and pain are both made more severe by low-grade inflammation. This study was undertaken to examine whether visceral fat, a major source of inflammatory cytokines and adipokines, is associated with an increased risk of knee OA or musculoskeletal pain. METHODS: Subjects in the Multicenter Osteoarthritis Study cohort, who were age 50-79 years and had or were at high risk of knee OA, underwent whole-body dual x-ray absorptiometry (DXA) at baseline. At baseline, 30 months, and 60 months radiographs and magnetic resonance images (MRIs) of the knees were obtained, and patients were asked to score the severity of their knee pain and to identify sites of joint pain using a body homunculus. Baseline DXA scans were used to measure total body fat and visceral and subcutaneous fat in the torso. The association of fat depot size with structural outcomes (incident radiographic OA and cartilage loss and synovitis on MRI) and with pain outcomes (worsening knee pain, number of painful joints, and widespread pain) was assessed. Regression analyses were adjusted for age, sex, race, education level, smoking status, physical activity, body mass index (BMI), and depressive symptoms. RESULTS: Of the 2,961 participants at baseline, 60.7% were women. The mean age was 62.5 years and mean BMI was 30.5 kg/m2 . After adjustment for covariates, no fat measures were associated with any structural outcomes. However, total and visceral, but not subcutaneous, fat were positively associated with worsening knee pain (P = 0.0005 for total fat and P = 0.007 for visceral fat) and widespread pain (P = 0.001 for total fat and P = 0.02 for visceral fat), and the amount of visceral fat was associated with the number of painful joints (P = 0.07). CONCLUSION: Our findings indicate that visceral fat is associated with an increased risk of musculoskeletal and widespread pain.


Subject(s)
Arthralgia/epidemiology , Musculoskeletal Pain/epidemiology , Obesity, Abdominal/epidemiology , Osteoarthritis, Knee/epidemiology , Absorptiometry, Photon , Aged , Female , Humans , Intra-Abdominal Fat/diagnostic imaging , Knee Joint/diagnostic imaging , Magnetic Resonance Imaging , Male , Middle Aged , Obesity, Abdominal/diagnostic imaging , Osteoarthritis, Knee/diagnostic imaging , Radiography , Subcutaneous Fat/diagnostic imaging , Synovitis/diagnostic imaging , Synovitis/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...