Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Rev Sci Instrum ; 95(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38656556

ABSTRACT

Multimodal in situ experiments during slot-die coating of thin films pioneer the way to kinetic studies on thin-film formation. They establish a powerful tool to understand and optimize the formation and properties of thin-film devices, e.g., solar cells, sensors, or LED films. Thin-film research benefits from time-resolved grazing-incidence wide- and small-angle x-ray scattering (GIWAXS/GISAXS) with a sub-second resolution to reveal the evolution of crystal structure, texture, and morphology during the deposition process. Simultaneously investigating optical properties by in situ photoluminescence measurements complements in-depth kinetic studies focusing on a comprehensive understanding of the triangular interdependency of processing, structure, and function for a roll-to-roll compatible, scalable thin-film deposition process. Here, we introduce a modular slot-die coater specially designed for in situ GIWAXS/GISAXS measurements and applicable to various ink systems. With a design for quick assembly, the slot-die coater permits the reproducible and comparable fabrication of thin films in the lab and at the synchrotron using the very same hardware components, as demonstrated in this work by experiments performed at Deutsches Elektronen-Synchrotron (DESY). Simultaneous to GIWAXS/GISAXS, photoluminescence measurements probe optoelectronic properties in situ during thin-film formation. An environmental chamber allows to control the atmosphere inside the coater. Modular construction and lightweight design make the coater mobile, easy to transport, quickly extendable, and adaptable to new beamline environments.

3.
ACS Appl Mater Interfaces ; 16(17): 22665-22675, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38647102

ABSTRACT

Multilayer neutron optics require precise control of interface morphology for optimal performance. In this work, we investigate the effects of different growth conditions on the interface morphology of Ni/Ti-based multilayers, with a focus on incorporating low-neutron-absorbing 11B4C and using different ion assistance schemes. Grazing-incidence small-angle X-ray scattering was used to probe the structural and morphological details of buried interfaces, revealing that the layers become more strongly correlated and the interfaces form mounds with increasing amounts of 11B4C. Applying high flux ion assistance during growth can reduce mound formation but lead to interface mixing, while a high flux modulated ion assistance scheme with an initial buffer layer grown at low ion energy and the top layer at higher ion energy prevents intermixing. The optimal condition was found to be adding 26.0 atom % 11B4C combined with high flux modulated ion assistance. A multilayer with a period of 48.2 Å and 100 periods was grown under these conditions, and coupled fitting to neutron and X-ray reflectivity data revealed an average interface width of only 2.7 Å, a significant improvement over the current state-of-the-art commercial Ni/Ti multilayers. Overall, our study demonstrates that the addition of 11B4C and the use of high flux modulated ion assistance during growth can significantly improve the interface morphology of Ni/Ti multilayers, leading to improved neutron optics performance.

4.
Sci Adv ; 10(7): eadl0402, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38354253

ABSTRACT

The utilization of polarized neutrons is of great importance in scientific disciplines spanning materials science, physics, biology, and chemistry. However, state-of-the-art multilayer polarizing neutron optics have limitations, particularly low specular reflectivity and polarization at higher scattering vectors/angles, and the requirement of high external magnetic fields to saturate the polarizer magnetization. Here, we show that, by incorporating 11B4C into Fe/Si multilayers, amorphization and smooth interfaces can be achieved, yielding higher neutron reflectivity, less diffuse scattering, and higher polarization. Magnetic coercivity is eliminated, and magnetic saturation can be reached at low external fields (>2 militesla). This approach offers prospects for substantial improvement in polarizing neutron optics with nonintrusive positioning of the polarizer, enhanced flux, increased data accuracy, and further polarizing/analyzing methods at neutron scattering facilities.

5.
Adv Mater ; 36(1): e2307024, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37739404

ABSTRACT

Solution processing of hybrid perovskite semiconductors is a highly promising approach for the fabrication of cost-effective electronic and optoelectronic devices. However, challenges with this approach lie in overcoming the controllability of the perovskite film morphology and the reproducibility of device efficiencies. Here, a facile and practical aging treatment (AT) strategy is reported to modulate the perovskite crystal growth to produce sufficiently high-quality perovskite thin films with improved homogeneity and full-coverage morphology. The resulting AT-films exhibit fewer defects, faster charge carrier transfer/extraction, and suppressed non-radiative recombination compared with reference. The AT-devices achieve a noticeable improvement in the reproducibility, operational stability, and photovoltaic performance of devices, with the average efficiency increased by 16%. It also demonstrates the feasibility and scalability of AT strategy in optimizing the film morphology and device performance for other perovskite components including MAPbI3 , (MAPbBr3 )15 (FAPbI3 )85 , and Cs0.05 (MAPbBr3 )0.17 (FAPbI3 )0.83 . This method opens an effective avenue to improve the quality of perovskite films and photovoltaic devices in a scalable and reproducible manner.

6.
Adv Mater ; 36(7): e2310237, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38009650

ABSTRACT

The experimental replicability of highly efficient perovskite solar cells (PSCs) is a persistent challenge faced by laboratories worldwide. Although trace impurities in raw materials can impact the experimental reproducibility of high-performance PSCs, the in situ study of how trace impurities affect perovskite film growth is never investigated. Here, light is shed on the impact of inevitable water contamination in lead iodide (PbI2 ) on the replicability of device performance, mainly depending on the synthesis methods of PbI2 . Through synchrotron-based structure characterization, it is uncovered that even slight additions of water to PbI2 accelerate the crystallization process in the perovskite layer during annealing. However, this accelerated crystallization also results in an imbalance of charge-carrier mobilities, leading to a degradation in device performance and reduced longevity of the solar cells. It is also found that anhydrous PbI2 promotes a homogenous nucleation process and improves perovskite film growth. Finally, the PSCs achieve a remarkable certified power conversion efficiency of 24.3%. This breakthrough demonstrates the significance of understanding and precisely managing the water content in PbI2 to ensure the experimental replicability of high-efficiency PSCs.

7.
Nanoscale Adv ; 5(24): 6837-6846, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38059029

ABSTRACT

Humidity sensors play a critical role in monitoring human activities, environmental health, food processing and storage, and many other fields. Recently, some 2D materials, particularly MXenes, have been considered as promising candidates for creating humidity sensors because of their high surface area, surface-to-bulk ratio, and excellent conductivity, arising from the high concentration and mobility of free electrons. In this work, we propose the plasmon-assisted surface modification and termination tuning of common MXene (Ti3C2Tx) to enhance their response to humidity and increase their stability against oxidation. Hydrophobic (-C6H4-CF3) and hydrophilic (-C6H4-COOH) chemical moieties were covalently grafted to the Ti3C2Tx surface using plasmon-mediated diazonium chemistry. In situ Grazing-Incidence Wide-Angle X-ray Scattering (GIWAXS) measurements, performed at different humidity levels indicate that surface modification significantly affects penetration of water molecules in Ti3C2Tx films. As a result, the sensitivity of the flakes to the presence of water molecules was significantly altered. Additionally, proposed surface grafting commonly proceeds on the less stable MXene surface sites, where flake oxidation commonly initiates. As a result of the modification, such "weak" and more chemically active sites were blocked and Ti3C2Tx stability was significantly enhanced.

8.
ACS Appl Mater Interfaces ; 15(38): 45426-45440, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37712830

ABSTRACT

While gold nanoparticles (Au NPs) are widely used as surface-enhanced Raman spectroscopy (SERS) substrates, their agglomeration and dynamic movement under laser irradiation result in the major drawback in SERS applications, viz., the repeatability of SERS signals. We tune the optical and structural properties of size- and shape-modified Au NPs embedded in a thin silicon nitride (Si3N4) matrix by intense electronic excitation with swift heavy ion (SHI) irradiation with the aim of overcoming this classical SERS disadvantage. We demonstrate the shape evolution of a single layer of Au NPs inserted between amorphous Si3N4 thin films under fluences of 120 MeV Au9+ ions ranging between 1 × 1011 and 1 × 1013 ions cm-2. This shape modification results in the gradual blue shift of the localized surface plasmon resonance (LSPR) dip until 1 × 1012 ions/cm2 and then a sudden diminishment at 1 × 1013 ions/cm2. Finite domain time difference (FDTD) simulations further justify our experimental optical spectra. The dynamical NP aggregation and dissolution, in addition to NP elongation and deformation at different fluences, are noted from 2D grazing incidence small-angle X-ray scattering (GISAXS) profiles, as well as cross-sectional transmission electron microscopy (X-TEM). The systematic shape evolution of metal NPs embedded in the insulating matrix is shown to be due to thermal spike-induced localized melting and a localized pressure hike upon SHI irradiation. Utilizing this specific control over the characteristics of Au NPs, viz., shape, size, interparticle gap, and corresponding optical response via SHI irradiation, we demonstrate their applications as very stable SERS substrates, where the separation between NPs and analyte does not alter under laser illumination. Thus, these irradiated SERS active substrates with controlled NP size and gap provide the optimal conditions for creating localized electromagnetic hotspots that amplify the SERS signals, which do not alter with time or laser exposure. We found that the film irradiated with 1 × 1011 exhibits the highest SERS intensity due to its optimal NP size distribution and shape. Thus, not only our study provides a SERS substrate for stable and repeatable signals but also the understanding depicted here opens new research avenues in designing SERS substrates, photovoltaics, optoelectronic devices, etc. with ion beam irradiation.

9.
Nanoscale ; 15(28): 12025-12037, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37403640

ABSTRACT

Thermal growth kinetics of embedded bimetallic (AuAg/SiO2) nanoparticles are explored and compared with their monometallic (Au/SiO2 and Ag/SiO2) counterparts, as their practical applicability demands stability and uniformity. The plasmonic properties of these nanoparticles (NPs) significantly improve when their size falls in the ultra-small region (diameter < 10 nm), owing to their large active surface area. Interestingly, the bimetallic NPs exhibit better optical properties and structural stability as compared to their monometallic counterparts. This calls for a thorough understanding of the nucleation and temperature-dependent growth to ensure size stability against thermal coarsening that most bimetallic NPs completely lack. Herein, the atom beam sputtered AuAg NPs are systematically analysed over a wide range of annealing temperatures (ATs), and the results are compared with those of Au and Ag NPs. The X-ray photoelectron spectroscopy spectra and other experimental results confirm the formation of AuAg alloy NPs inside the silica matrix. Furthermore, techniques like transmission electron microscopy and grazing-incidence small-/wide-angle X-ray scattering were used to explore the temperature-dependent structural and morphological stability of the NPs. Our results show that the deposited AuAg NPs retain their spherical shape and remain as an alloy for the entire range of ATs. When the AT increases from 25 °C to 800 °C, the size of the NPs also increases from 3.5 to 4.8 nm; beyond that, their size grows substantially to 13.6 nm at 900 °C. We observed that the NPs remain in the ultra-small size range (∼5 nm) until an AT of 800 °C. Beyond that Ostwald ripening is ascribed to be the major cause of particle growth, resulting in an active surface area loss. Based on the outcomes, a three-step nucleation and growth mechanism is proposed.

10.
J Phys Chem Lett ; 14(25): 5834-5840, 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37339505

ABSTRACT

One of the major limitations of flexible sensors is the loss of conductivity upon multiple stretching and bending cycles. Conducting fillers with two different geometries, carbon black and carbon nanotubes, were introduced in polydimethylsiloxane (PDMS) for physical insights into the structure formation of nanofillers by the application of periodic tensile stress. The loading of the nanofillers was selected beyond the percolation threshold to determine the cyclic stability of the resulting network channels. The surface chemistry of carbon nanotubes has been varied to understand the interfacial interactions at the molecular length scale. The combination of in situ stretching, annealing, and vis-à-vis conductometry of nanocomposite films with synchrotron-based ultra-small angle X-ray scattering experiments enables us to highlight the importance of the fractal dimensions of nanofillers for the molecular level interactions. The irreversible formation of nanofiller network geometries under cyclic stress and annealing was found to be responsible for the electrical properties of a flexible conducting film.

11.
Nanoscale Horiz ; 8(3): 383-395, 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36723240

ABSTRACT

The superlattice in a quantum dot (QD) film on a flexible substrate deformed by uniaxial strain shows a phase transition in unit cell symmetry. With increasing uniaxial strain, the QD superlattice unit cell changes from tetragonal to cubic to tetragonal phase as measured with in situ grazing-incidence small-angle X-ray scattering (GISAXS). The respective changes in the optoelectronic coupling are probed with photoluminescence (PL) measurements. The PL emission intensity follows the phase transition due to the resulting changing inter-dot distances. The changes in PL intensity accompany a redshift in the emission spectrum, which agrees with the Förster resonance energy transfer (FRET) theory. The results are essential for a fundamental understanding of the impact of strain on the performance of flexible devices based on QD films, such as wearable electronics and next-generation solar cells on flexible substrates.

12.
Langmuir ; 38(39): 11983-11993, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36150131

ABSTRACT

Ultrasmall nanoparticles (NPs) with a high active surface area are essential for optoelectronic and photovoltaic applications. However, the structural stability and sustainability of these ultrasmall NPs at higher temperatures remain a critical problem. Here, we have synthesized the nanocomposites (NCs) of Ag NPs inside the silica matrix using the atom beam co-sputtering technique. The post-deposition growth of the embedded Ag NPs is systematically investigated at a wide range of annealing temperatures (ATs). A novel, fast, and effective procedure, correlating the experimental (UV-vis absorption results) and theoretical (quantum mechanical modeling, QMM) results, is used to estimate the size of NPs. The QMM-based simulation, employed for this work, is found to be more accurate in reproducing the absorption spectra over the classical/modified Drude model, which fails to predict the expected shift in the LSPR for ultrasmall NPs. Unlike the classical Drude model, the QMM incorporates the intraband transition of the conduction band electrons to calculate the effective dielectric function of metallic NCs, which is the major contribution of LSPR shifts for ultrasmall NPs. In this framework, a direct comparison is made between experimentally and theoretically observed LSPR peak positions, and it is observed that the size of NPs grows from 3 to 18 nm as AT increases from room temperature to 900 °C. Further, in situ grazing-incidence small- & wide-angle X-ray scattering and transmission electron microscopy measurements are employed to comprehend the growth of Ag NPs and validate the UV + QMM results. We demonstrate that, unlike chemically grown NPs, the embedded Ag NPs ensure greater stability in size and remain in an ultrasmall regime up to 800 °C, and beyond this temperature, the size of NPs increases exponentially due to dominant Ostwald ripening. Finally, a three-stage mechanism is discussed to understand the process of nucleation and growth of the silica-embedded Ag NPs.

13.
Nanoscale Adv ; 4(12): 2533-2560, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-36132287

ABSTRACT

Fabrication of ultra-thin gold (Au) layers (UTGLs) has been regarded as the key technique to achieve applications with tunable optical response, flexible sensors and electronic devices. Various strategies have been developed to optimize the wetting process of Au, resulting in the formation of UTGLs at a minimum thickness. The related studies on UTGLs attracted huge attention in recent years. On the one hand, the growth processes of UTGLs on different substrates were in-depth probed by advanced in situ characterization techniques and the effects of optimization strategies on the growth of UTGLs were also revealed. On the other hand, based on the understanding of the growth behavior and the assistance of optimization strategies, various applications of UTGLs were realized based on optical/plasmon responses, surface-enhanced Raman scattering and as electrodes for various sensors and electronic devices, as well as being seed layers for thin film growth. In this focused review, both the fundamental and practical studies on UTGLs in the most recent years are elaborated in detail. The growth processes of UTGLs revealed by in situ characterization techniques, such as grazing-incidence small-angle X-ray scattering (GISAXS), as well as the state of the art of UTGL-based applications, are reviewed.

14.
Adv Mater ; 34(20): e2200907, 2022 May.
Article in English | MEDLINE | ID: mdl-35315132

ABSTRACT

Volatile solids with symmetric π-backbone are intensively implemented on manipulating the nanomorphology for improving the operability and stability of organic solar cells. However, due to the isotropic stacking, the announced solids with symmetric geometry cannot modify the microscopic phase separation and component distribution collaboratively, which will constrain the promotion of exciton splitting and charge collection efficiency. Inspired by the superiorities of asymmetric configuration, a novel process-aid solid (PAS) engineering is proposed. By coupling with BTP core unit in Y-series molecule, an asymmetric, volatile 1,3-dibromo-5-chlorobenzene solid can induce the anisotropic dipole direction, elevated dipole moment, and interlaminar interaction spontaneously. Due to the synergetic effects on the favorable phase separation and desired component distribution, the PAS-treated devices feature the evident improvement of exciton splitting, charge transport, and collection, accompanied by the suppressed trap-assisted recombination. Consequently, an impressive fill factor of 80.2% with maximum power conversion efficiency (PCE) of 18.5% in the PAS-treated device is achieved. More strikingly, the PAS-treated devices demonstrate a promising thickness-tolerance character, where a record PCE of 17.0% is yielded in PAS devices with a 300 nm thickness photoactive layer, which represents the highest PCE for thick-film organic solar cells.

15.
Nanoscale ; 14(6): 2502-2510, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35103743

ABSTRACT

Natural high-performance materials have inspired the exploration of novel materials from protein building blocks. The ability of proteins to self-organize into amyloid-like nanofibrils has opened an avenue to new materials by hierarchical assembly processes. As the mechanisms by which proteins form nanofibrils are becoming clear, the challenge now is to understand how the nanofibrils can be designed to form larger structures with defined order. We here report the spontaneous and reproducible formation of ordered microstructure in solution cast films from whey protein nanofibrils. The structural features are directly connected to the nanostructure of the protein fibrils, which is itself determined by the molecular structure of the building blocks. Hence, a hierarchical assembly process ranging over more than six orders of magnitude in size is described. The fibril length distribution is found to be the main determinant of the microstructure and the assembly process originates in restricted capillary flow induced by the solvent evaporation. We demonstrate that the structural features can be switched on and off by controlling the length distribution or the evaporation rate without losing the functional properties of the protein nanofibrils.


Subject(s)
Nanostructures , Amyloid , Amyloidogenic Proteins , Solvents
16.
ACS Appl Mater Interfaces ; 14(2): 2958-2967, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-34989234

ABSTRACT

Crystal orientations are closely related to the behavior of photogenerated charge carriers and are vital for controlling the optoelectronic properties of perovskite solar cells. Herein, we propose a facile approach to reveal the effect of lattice plane orientation distribution on the charge carrier kinetics via constructing CsBr-doped mixed cation perovskite phases. With grazing-incidence wide-angle X-ray scattering measurements, we investigate the crystallographic properties of mixed perovskite films at the microscopic scale and reveal the effect of the extrinsic CsBr doping on the stacking behavior of the lattice planes. Combined with transient photocurrent, transient photovoltage, and space-charge-limited current measurements, the transport dynamics and recombination of the photogenerated charge carriers are characterized. It is demonstrated that CsBr compositional engineering can significantly affect the perovskite crystal structure in terms of the orientation distribution of crystal planes and passivation of trap-state densities, as well as simultaneously facilitate the photogenerated charge carrier transport across the absorber and its interfaces. This strategy provides unique insight into the underlying relationship between the stacking pattern of crystal planes, photogenerated charge carrier transport, and optoelectronic properties of solar cells.

17.
ACS Appl Mater Interfaces ; 14(2): 3143-3155, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-34982535

ABSTRACT

Mesoporous hematite (α-Fe2O3) thin films with high surface-to-volume ratios show great potential as photoelectrodes or electrochemical electrodes in energy conversion and storage. In the present work, with the assistance of an up-scalable slot-die coating technique, locally highly ordered α-Fe2O3 thin films are successfully printed based on the amphiphilic diblock copolymer poly(styrene-b-4-vinylpyridine) (PS-b-P4VP) as a structure-directing agent. Pure PS-b-P4VP films are printed under the same conditions for comparison. The micellization of the diblock copolymer in solution, the film formation process of the printed thin films, the homogeneity of the dry films in the lateral and vertical direction as well as the morphological and compositional information on the calcined hybrid PS-b-P4VP/FeCl3 thin film are investigated. Because of convection during the solvent evaporation process, a similar dimple-type structure of vertically aligned cylindrical PS domains in a P4VP matrix developed for both printed PS-b-P4VP and hybrid PS-b-P4VP/FeCl3 thin films. The coordination effect between the Fe3+ ions and the vinylpyridine groups significantly affects the attachment ability of the P4VP chains to the silicon substrate. Accordingly, distinct feature sizes and homogeneity in the lateral direction, as well as the thicknesses in the perpendicular direction, are demonstrated in the two printed films. By removing the polymer template from the hybrid PS-b-P4VP/FeCl3 film at high temperature, a locally highly ordered mesoporous α-Fe2O3 film is obtained. Thus, a facile and up-scalable printing technique is presented for producing homogeneous mesoporous α-Fe2O3 thin films.

18.
ACS Appl Mater Interfaces ; 13(47): 56663-56673, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34788001

ABSTRACT

Large-scale fabrication of metal cluster layers for usage in sensor applications and photovoltaics is a huge challenge. Physical vapor deposition offers large-scale fabrication of metal cluster layers on templates and polymer surfaces. In the case of aluminum (Al), only little is known about the formation and interaction of Al clusters during sputter deposition. Complex polymer surface morphologies can tailor the deposited Al cluster layer. Here, a poly(methyl methacrylate)-block-poly(3-hexylthiophen-2,5-diyl) (PMMA-b-P3HT) diblock copolymer template is used to investigate the nanostructure formation of Al cluster layers on the different polymer domains and to compare it with the respective homopolymers PMMA and P3HT. The optical properties relevant for sensor applications are monitored with ultraviolet-visible (UV-vis) measurements during the sputter deposition. The formation of Al clusters is followed in situ with grazing-incidence small-angle X-ray scattering (GISAXS), and the chemical interaction is revealed by X-ray photoelectron spectroscopy (XPS). Furthermore, atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM) yield topographical information about selective wetting of Al on the P3HT domains and embedding in the PMMA domains in the early stages, followed by four distinct growth stages describing the Al nanostructure formation.

19.
Sci Rep ; 11(1): 18777, 2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34548512

ABSTRACT

Semiconductor quantum dot (QD) arrays can be useful for optical devices such as lasers, solar cells and light-emitting diodes. As the size distribution influences the band-gap, it is worthwhile to investigate QDs prepared using different solvents because each of them could influence the overall morphology differently, depending on the ligand network around individual QDs. Here, we follow the nucleation and growth of gold (Au) on CdSe QD arrays to investigate the influence of surface ligands and thereby realized interparticle distance between QDs on Au growth behaviour. We particularly emphasize on the monolayer stage as the Au decoration on individual QDs is expected at this stage. Therefore, we sputter-deposit Au on each QD array to investigate the morphological evolution in real-time using time-resolved grazing-incidence small-angle X-ray scattering (GISAXS). The growth kinetics - independent of the template - signifies that the observed template-mediated nucleation is limited only to the very first few monolayers. Delicate changes in the Au growth morphology are seen in the immediate steps following the initial replicated decoration of the QD arrays. This is followed by a subsequent clustering and finally a complete Au coverage of the QD arrays.

20.
Nanoscale ; 13(23): 10555-10565, 2021 Jun 17.
Article in English | MEDLINE | ID: mdl-34100512

ABSTRACT

Copper (Cu) as an excellent electrical conductor and the amphiphilic diblock copolymer polystyrene-block-poly(ethylene oxide) (PS-b-PEO) as a polymer electrolyte and ionic conductor can be combined with an active material in composite electrodes for polymer lithium-ion batteries (LIBs). As interfaces are a key issue in LIBs, sputter deposition of Cu contacts on PS-b-PEO thin films with high PEO fraction is investigated with in situ grazing-incidence small-angle X-ray scattering (GISAXS) to follow the formation of the Cu layer in real-time. We observe a hierarchical morphology of Cu clusters building larger Cu agglomerates. Two characteristic distances corresponding to the PS-b-PEO microphase separation and the Cu clusters are determined. A selective agglomeration of Cu clusters on the PS domains explains the origin of the persisting hierarchical morphology of the Cu layer even after a complete surface coverage is reached. The spheroidal shape of the Cu clusters growing within the first few nanometers of sputter deposition causes a highly porous Cu-polymer interface. Four growth stages are distinguished corresponding to different kinetics of the cluster growth of Cu on PS-b-PEO thin films: (I) nucleation, (II) diffusion-driven growth, (III) adsorption-driven growth, and (IV) grain growth of Cu clusters. Percolation is reached at an effective Cu layer thickness of 5.75 nm.

SELECTION OF CITATIONS
SEARCH DETAIL
...