Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
J Health Care Poor Underserved ; 35(1): 225-245, 2024.
Article in English | MEDLINE | ID: mdl-38661868

ABSTRACT

Gender affirmation is standard medical care, and community input is an essential component of patient-centered care. This study shares how our organization assessed patients' perceptions of health care organizations that provide gender-affirming care. Building on qualitative interview data, we distributed an online survey via a lesbian-gaybisexual-transgender-queer research firm. The survey was completed by 314 transgender individuals residing in 37 U.S. states and territories. Most respondents (69%) reported negative experiences seeking health care. Patients would travel long distances for competent providers and were more willing to seek care from an institution actively working to change a formerly negative reputation. Patients described high-quality organizations as prioritizing staff training (95.5%), having inclusive policies (93.3%), and hiring expert staff (86.0%). Programs should ensure cultural competency training for all staff. They should recruit and retain providers skilled in transgender medicine, especially trans-identified providers. Patient experience and reputation in the community influence where patients seek care.


Subject(s)
Patient-Centered Care , Transgender Persons , Humans , Transgender Persons/psychology , Patient-Centered Care/organization & administration , Female , Male , Adult , Middle Aged , United States , Young Adult , Patient Acceptance of Health Care , Surveys and Questionnaires
2.
Sci Adv ; 10(9): eadk0593, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38416836

ABSTRACT

We introduce a climate intervention strategy focused on decreasing water vapor (WV) concentrations near the tropopause and in the stratosphere to increase outbound longwave radiation. The mechanism is the targeted injection of ice-nucleating particles (INP) in air supersaturated with respect to ice at high altitudes in the tropical entryway to the stratosphere. Ice formation in this region is a critical control of stratospheric WV. Recent airborne in situ data indicate that targeting only a small fraction of air parcels in the region would be sufficient to achieve substantial removal of water. This "intentional stratospheric dehydration" (ISD) strategy would not counteract a large fraction of the forcing from carbon dioxide but may contribute to a portfolio of climate interventions by acting with different time and length scales of impact and risk than other interventions that are already under consideration. We outline the idea, its plausibility, technical hurdles, and side effects to be considered.

3.
Nat Geosci ; 16(8): 683-688, 2023.
Article in English | MEDLINE | ID: mdl-37564378

ABSTRACT

Wildfires emit large amounts of black carbon and light-absorbing organic carbon, known as brown carbon, into the atmosphere. These particles perturb Earth's radiation budget through absorption of incoming shortwave radiation. It is generally thought that brown carbon loses its absorptivity after emission in the atmosphere due to sunlight-driven photochemical bleaching. Consequently, the atmospheric warming effect exerted by brown carbon remains highly variable and poorly represented in climate models compared with that of the relatively nonreactive black carbon. Given that wildfires are predicted to increase globally in the coming decades, it is increasingly important to quantify these radiative impacts. Here we present measurements of ensemble-scale and particle-scale shortwave absorption in smoke plumes from wildfires in the western United States. We find that a type of dark brown carbon contributes three-quarters of the short visible light absorption and half of the long visible light absorption. This strongly absorbing organic aerosol species is water insoluble, resists daytime photobleaching and increases in absorptivity with night-time atmospheric processing. Our findings suggest that parameterizations of brown carbon in climate models need to be revised to improve the estimation of smoke aerosol radiative forcing and associated warming.

4.
Environ Int ; 178: 108069, 2023 08.
Article in English | MEDLINE | ID: mdl-37419059

ABSTRACT

In this study, we developed a practical approach to augment elemental carbon (EC) emissions to improve the reproducibility of the most recent air quality with photochemical grid modeling in support of source-receptor relationship analysis. We demonstrated the usefulness of this approach with a series of simulations for EC concentrations over Northeast Asia during the 2016 Korea-United States Air Quality study. Considering the difficulty of acquiring EC observational data in foreign countries, our approach takes two steps: (1) augmenting upwind EC emissions based on simulated upwind contributions and observational data at a downwind EC monitor considered as the most representative monitor for upwind influences and (2) adjusting downwind EC emissions based on simulated downwind contributions, including the effects of updated upwind emissions from the first step and observational data at the downwind EC monitors. The emission adjustment approach resulted in EC emissions 2.5 times higher than the original emissions in the modeling domain. The EC concentration in the downwind area was observed to be 1.0 µg m-3 during the study period, while the simulated EC concentration was 0.5 µg m-3 before the emission adjustment. After the adjustment, the normalized mean error of the daily mean EC concentration decreased from 48 % to 22 % at ground monitor locations. We found that the EC simulation results were improved at high altitudes, and the contribution of the upwind areas was greater than that of the downwind areas for EC concentrations downwind with or without emission adjustment. This implies that collaborating with upwind regions is essential to alleviate high EC concentrations in downwind areas. The developed emission adjustment approach can be used for any upwind or downwind area when transboundary air pollution mitigation is needed because it provides better reproducibility of the most recent air quality through modeling with improved emission data.


Subject(s)
Air Pollutants , Air Pollution , United States , Air Pollutants/analysis , Particulate Matter/analysis , Vehicle Emissions/analysis , Reproducibility of Results , Environmental Monitoring/methods , Air Pollution/analysis , Carbon/analysis , Asia
5.
Microbiol Resour Announc ; 12(7): e0010723, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37272828

ABSTRACT

We present the structural and functional annotation of Escherichia coli bacteriophage 55, which has a genome length of 170,393 bp, with 219 predicted genes.

6.
Microbiol Resour Announc ; 12(6): e0010623, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37191527

ABSTRACT

We present the annotated genome sequence of Escherichia coli bacteriophage 107, a T4-like bacteriophage. Phage 107 has a genome length of 167,509 bp and 287 predicted genes.

7.
Microbiol Resour Announc ; 11(2): e0094921, 2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35175109

ABSTRACT

We present the annotated genome sequence of Escherichia coli bacteriophage U115, a T4-like bacteriophage. Phage U115 has a genome length of 166,986 bp and has 286 predicted genes.

8.
Geophys Res Lett ; 49(18): e2022GL099175, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36591326

ABSTRACT

Aerosol mass extinction efficiency (MEE) is a key aerosol property used to connect aerosol optical properties with aerosol mass concentrations. Using measurements of smoke obtained during the Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) campaign we find that mid-visible smoke MEE can change by a factor of 2-3 between fresh smoke (<2 hr old) and one-day-old smoke. While increases in aerosol size partially explain this trend, changes in the real part of the aerosol refractive index (real(n)) are necessary to provide closure assuming Mie theory. Real(n) estimates derived from multiple days of FIREX-AQ measurements increase with age (from 1.40 - 1.45 to 1.5-1.54 from fresh to one-day-old) and are found to be positively correlated with organic aerosol oxidation state and aerosol size, and negatively correlated with smoke volatility. Future laboratory, field, and modeling studies should focus on better understanding and parameterizing these relationships to fully represent smoke aging.

9.
ACS Earth Space Chem ; 5(6): 1436-1454, 2021 Jun 17.
Article in English | MEDLINE | ID: mdl-34164590

ABSTRACT

Formic acid (HCOOH) is an important component of atmospheric acidity but its budget is poorly understood, with prior observations implying substantial missing sources. Here we combine pole-to-pole airborne observations from the Atmospheric Tomography Mission (ATom) with chemical transport model (GEOS-Chem CTM) and back trajectory analyses to provide the first global in-situ characterization of HCOOH in the remote atmosphere. ATom reveals sub-100 ppt HCOOH concentrations over most of the remote oceans, punctuated by large enhancements associated with continental outflow. Enhancements correlate with known combustion tracers and trajectory-based fire influences. The GEOS-Chem model underpredicts these in-plume HCOOH enhancements, but elsewhere we find no broad indication of a missing HCOOH source in the background free troposphere. We conclude that missing non-fire HCOOH precursors inferred previously are predominantly short-lived. We find indications of a wet scavenging underestimate in the model consistent with a positive HCOOH bias in the tropical upper troposphere. Observations reveal episodic evidence of ocean HCOOH uptake, which is well-captured by GEOS-Chem; however, despite its strong seawater undersaturation HCOOH is not consistently depleted in the remote marine boundary layer. Over fifty fire and mixed plumes were intercepted during ATom with widely varying transit times and source regions. HCOOH:CO normalized excess mixing ratios in these plumes range from 3.4 to >50 ppt/ppb CO and are often over an order of magnitude higher than expected primary emission ratios. HCOOH is thus a major reactive organic carbon reservoir in the aged plumes sampled during ATom, implying important missing pathways for in-plume HCOOH production.

10.
Sci Total Environ ; 773: 145531, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-33582332

ABSTRACT

We investigated the changes in the size distribution, coating thickness, and mass absorption cross-section (MAC) of black carbon (BC) with aging and estimated the light absorption enhancement (Eabs) in the Asian outflow from airborne in-situ measurements during 2016 KORUS-AQ campaign. The BC number concentration decreased, but mass mean diameter increased with increasing altitude in the West Coast (WC) and Seoul Metropolitan Area (SMA), reflecting the contrast between freshly emitted BC-containing particles at the surface and more aged aerosol associated with aggregation during vertical mixing and transport. Contradistinctively, BC number and mass size distributions were relatively invariant with altitude over the Yellow Sea (YS) because sufficiently aged BC from eastern China were horizontally transported to all altitudes over the YS, and there are no significant sources at the surface. The averaged inferred MAC of refractory BC in three regions reflecting differences in their size distributions increased to 9.8 ± 1.0 m2 g-1 (YS), 9.3 ± 0.9 m2 g-1 (WC), and 8.2 ± 0.9 m2 g-1 (SMA) as BC coating thickness increased from 20 nm to 120 nm. The absorption coefficient of BC calculated from the coating thickness and MAC were highly correlated with the filter-based absorption measurements with the slope of 1.16 and R2 of 0.96 at 550 nm, revealing that the thickly coated BC had a large MAC and absorption coefficient. The Eabs due to the inferred coatings was estimated as 1.0-1.6, which was about 30% lower than those from climate models and laboratory experiments, suggesting that the increase in the BC absorption by the coatings in the Asian outflow is not as large as calculated in the previous studies. Organics contributed to the largest Eabs accounting for 69% (YS), 61% (WC), and 64% (SMA). This implies that organics are largely responsible for the lensing effect of BC rather than sulfates in the Asian outflow.

11.
Geophys Res Lett ; 47(13): e2020GL088747, 2020 Jul 16.
Article in English | MEDLINE | ID: mdl-32728304

ABSTRACT

Brown carbon (BrC) is an organic aerosol material that preferentially absorbs light of shorter wavelengths. Global-scale radiative impacts of BrC have been difficult to assess due to the lack of BrC observational data. To address this, aerosol filters were continuously collected with near pole-to-pole latitudinal coverage over the Pacific and Atlantic basins in three seasons as part of the Atmospheric Tomography Mission. BrC chromophores in filter extracts were measured. We find that globally, BrC was highly spatially heterogeneous, mostly detected in air masses that had been transported from regions of extensive biomass burning. We calculate the average direct radiative effect due to BrC absorption accounted for approximately 7% to 48% of the top of the atmosphere clear-sky instantaneous forcing by all absorbing carbonaceous aerosols in the remote atmosphere, indicating that BrC from biomass burning is an important component of the global radiative balance.

12.
Article in English | MEDLINE | ID: mdl-33409323

ABSTRACT

The Korea - United States Air Quality Study (May - June 2016) deployed instrumented aircraft and ground-based measurements to elucidate causes of poor air quality related to high ozone and aerosol concentrations in South Korea. This work synthesizes data pertaining to aerosols (specifically, particulate matter with aerodynamic diameters <2.5 micrometers, PM2.5) and conditions leading to violations of South Korean air quality standards (24-hr mean PM2.5 < 35 µg m-3). PM2.5 variability from AirKorea monitors across South Korea is evaluated. Detailed data from the Seoul vicinity are used to interpret factors that contribute to elevated PM2.5. The interplay between meteorology and surface aerosols, contrasting synoptic-scale behavior vs. local influences, is presented. Transboundary transport from upwind sources, vertical mixing and containment of aerosols, and local production of secondary aerosols are discussed. Two meteorological periods are probed for drivers of elevated PM2.5. Clear, dry conditions, with limited transport (Stagnant period), promoted photochemical production of secondary organic aerosol from locally emitted precursors. Cloudy humid conditions fostered rapid heterogeneous secondary inorganic aerosol production from local and transported emissions (Transport/Haze period), likely driven by a positive feedback mechanism where water uptake by aerosols increased gas-to-particle partitioning that increased water uptake. Further, clouds reduced solar insolation, suppressing mixing, exacerbating PM2.5 accumulation in a shallow boundary layer. The combination of factors contributing to enhanced PM2.5 is challenging to model, complicating quantification of contributions to PM2.5 from local versus upwind precursors and production. We recommend co-locating additional continuous measurements at a few AirKorea sites across South Korea to help resolve this and other outstanding questions: carbon monoxide/carbon dioxide (transboundary transport tracer), boundary layer height (surface PM2.5 mixing depth), and aerosol composition with aerosol liquid water (meteorologically-dependent secondary production). These data would aid future research to refine emissions targets to further improve South Korean PM2.5 air quality.

13.
Geophys Res Lett ; 46(2): 1061-1069, 2019 Jan 28.
Article in English | MEDLINE | ID: mdl-34219825

ABSTRACT

Convective systems dominate the vertical transport of aerosols and trace gases. The most recent in situ aerosol measurements presented here show that the concentrations of primary aerosols including sea salt and black carbon drop by factors of 10 to 10,000 from the surface to the upper troposphere. In this study we show that the default convective transport scheme in the National Science Foundation/Department of Energy Community Earth System Model results in a high bias of 10-1,000 times the measured aerosol mass for black carbon and sea salt in the middle and upper troposphere. A modified transport scheme, which considers aerosol activation from entrained air above the cloud base and aerosol-cloud interaction associated with convection, dramatically improves model agreement with in situ measurements suggesting that deep convection can efficiently remove primary aerosols. We suggest that models that fail to consider secondary activation may overestimate black carbon's radiative forcing by a factor of 2.

14.
Proc Natl Acad Sci U S A ; 115(50): E11595-E11603, 2018 12 11.
Article in English | MEDLINE | ID: mdl-30478047

ABSTRACT

Wildfires inject large amounts of black carbon (BC) particles into the atmosphere, which can reach the lowermost stratosphere (LMS) and cause strong radiative forcing. During a 14-month period of observations on board a passenger aircraft flying between Europe and North America, we found frequent and widespread biomass burning (BB) plumes, influencing 16 of 160 flight hours in the LMS. The average BC mass concentrations in these plumes (∼140 ng·m-3, standard temperature and pressure) were over 20 times higher than the background concentration (∼6 ng·m-3) with more than 100-fold enhanced peak values (up to ∼720 ng·m-3). In the LMS, nearly all BC particles were covered with a thick coating. The average mass equivalent diameter of the BC particle cores was ∼120 nm with a mean coating thickness of ∼150 nm in the BB plume and ∼90 nm with a coating of ∼125 nm in the background. In a BB plume that was encountered twice, we also found a high diameter growth rate of ∼1 nm·h-1 due to the BC particle coatings. The observed high concentrations and thick coatings of BC particles demonstrate that wildfires can induce strong local heating in the LMS and may have a significant influence on the regional radiative forcing of climate.

15.
Environ Sci Technol ; 51(9): 5317-5325, 2017 May 02.
Article in English | MEDLINE | ID: mdl-28401762

ABSTRACT

Incomplete combustion during flaring can lead to production of black carbon (BC) and loss of methane and other pollutants to the atmosphere, impacting climate and air quality. However, few studies have measured flare efficiency in a real-world setting. We use airborne data of plume samples from 37 unique flares in the Bakken region of North Dakota in May 2014 to calculate emission factors for BC, methane, ethane, and combustion efficiency for methane and ethane. We find no clear relationship between emission factors and aircraft-level wind speed or between methane and BC emission factors. Observed median combustion efficiencies for methane and ethane are close to expected values for typical flares according to the US EPA (98%). However, we find that the efficiency distribution is skewed, exhibiting log-normal behavior. This suggests incomplete combustion from flares contributes almost 1/5 of the total field emissions of methane and ethane measured in the Bakken shale, more than double the expected value if 98% efficiency was representative. BC emission factors also have a skewed distribution, but we find lower emission values than previous studies. The direct observation for the first time of a heavy-tail emissions distribution from flares suggests the need to consider skewed distributions when assessing flare impacts globally.


Subject(s)
Methane , Natural Gas , Air Pollutants , Carbon , Ethane , North Dakota
16.
J Geophys Res Atmos ; 121(12): 7079-7087, 2016 06 27.
Article in English | MEDLINE | ID: mdl-27867782

ABSTRACT

The Rim Fire of 2013, the third largest area burned by fire recorded in California history, is simulated by a climate model coupled with a size-resolved aerosol model. Modeled aerosol mass, number, and particle size distribution are within variability of data obtained from multiple-airborne in situ measurements. Simulations suggest that Rim Fire smoke may block 4-6% of sunlight energy reaching the surface, with a dimming efficiency around 120-150 W m-2 per unit aerosol optical depth in the midvisible at 13:00-15:00 local time. Underestimation of simulated smoke single scattering albedo at midvisible by 0.04 suggests that the model overestimates either the particle size or the absorption due to black carbon. This study shows that exceptional events like the 2013 Rim Fire can be simulated by a climate model with 1° resolution with overall good skill, although that resolution is still not sufficient to resolve the smoke peak near the source region.

17.
J Geophys Res Atmos ; 121(22): 661-677, 2016 Nov 27.
Article in English | MEDLINE | ID: mdl-33489645

ABSTRACT

This study reports on the first set of ambient observations of sub-1.0 hygroscopicity values (i.e., growth factor, ratio of humidified-to-dry diameter, GF=D p,wet /D p,dry and f(RH), ratio of humidified-to-dry scattering coefficients, less than 1) with consistency across different instruments, regions, and platforms. We utilized data from (i) a shipboard humidified tandem differential mobility analyzer (HTDMA) during Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE) in 2011, (ii) multiple instruments on the DC-8 aircraft during Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) in 2013, as well as (iii) the Differential Aerosol Sizing and Hygroscopicity Spectrometer Probe (DASH-SP) during measurement intensives during Summer 2014 and Winter 2015 in Tucson, Arizona. Sub-1.0 GFs were observed across the range of relative humidity (RH) investigated (75-95%), and did not show a RH-dependent trend in value below 1.0 or frequency of occurrence. A commonality between suppressed hygroscopicity in these experiments, including sub-1.0 GF, was the presence of smoke. Evidence of externally mixed aerosol, and thus multiple GFs, was observed during smoke periods resulting in at least one mode with GF < 1. Time periods during which the DASH-SP detected externally mixed aerosol coincide with sub-1.0 f(RH) observations. Mechanisms responsible for sub-1.0 hygroscopicity are discussed and include refractive index (RI) modifications due to aqueous processing, particle restructuring, and volatilization effects. To further investigate ambient observations of sub-1.0 GFs, f(RH), and particle restructuring, modifying hygroscopicity instruments with pre-humidification modules is recommended.

18.
Inquiry ; 522015.
Article in English | MEDLINE | ID: mdl-25911617

ABSTRACT

This study presents the measurement properties of 5 scales used in the Healthcare Provider Cultural Competence Instrument (HPCCI). The HPCCI measures a health care provider's cultural competence along 5 primary dimensions: (1) awareness/sensitivity, (2) behaviors, (3) patient-centered communication, (4) practice orientation, and (5) self-assessment. Exploratory factor analysis demonstrated that the 5 scales were distinct, and within each scale items loaded as expected. Reliability statistics indicated a high level of internal consistency within each scale. The results indicate that the HPCCI effectively measures the cultural competence of health care providers and can provide useful professional feedback for practitioners and organizations seeking to increase a practitioner's cultural competence.


Subject(s)
Cultural Competency , Health Personnel , Psychometrics/methods , Awareness , Communication , Cultural Diversity , Humans , Professional-Patient Relations , Quality Assurance, Health Care , Reproducibility of Results , Self-Assessment , Sensitivity and Specificity , Surveys and Questionnaires
19.
Proc Natl Acad Sci U S A ; 109(37): 14802-7, 2012 Sep 11.
Article in English | MEDLINE | ID: mdl-22927381

ABSTRACT

Biomass burning (BB) contributes large amounts of black carbon (BC) and particulate organic matter (POM) to the atmosphere and contributes significantly to the earth's radiation balance. BB particles can be a complicated optical system, with scattering and absorption contributions from BC, internal mixtures of BC and POM, and wavelength-dependent absorption of POM. Large amounts of POM can also be externally mixed. We report on the unique ability of multi-wavelength photo-acoustic measurements of dry and thermal-denuded absorption to deconstruct this complicated wavelength-dependent system of absorption and mixing. Optical measurements of BB particles from the Four Mile Canyon fire near Boulder, Colorado, showed that internal mixtures of BC and POM enhanced absorption by up to 70%. The data supports the assumption that the POM was very weakly absorbing at 532 nm. Enhanced absorption at 404 nm was in excess of 200% above BC absorption and varied as POM mass changed, indicative of absorbing POM. Absorption by internal mixing of BC and POM contributed 19( ± 8)% to total 404-nm absorption, while BC alone contributed 54( ± 16)%. Approximately 83% of POM mass was externally mixed, the absorption of which contributed 27( ± 15)% to total particle absorption (at 404 nm). The imaginary refractive index and mass absorption efficiency (MAE) of POM at 404 nm changed throughout the sampling period and were found to be 0.007 ± 0.005 and 0.82 ± 0.43 m(2) g(-1), respectively. Our analysis shows that the MAE of POM can be biased high by up to 50% if absorption from internal mixing of POM and BC is not included.


Subject(s)
Air Pollutants/analysis , Biofuels/analysis , Biomass , Fires , Particulate Matter/analysis , Soot/analysis , Spectrum Analysis/methods , Absorption , Colorado , Models, Chemical
20.
Environ Sci Technol ; 46(6): 3093-100, 2012 Mar 20.
Article in English | MEDLINE | ID: mdl-22356579

ABSTRACT

Secondary organic aerosol (SOA) resulting from the oxidation of organic species emitted by the Deepwater Horizon oil spill were sampled during two survey flights conducted by a National Oceanic and Atmospheric Administration WP-3D aircraft in June 2010. A new technique for fast measurements of cloud condensation nuclei (CCN) supersaturation spectra called Scanning Flow CCN Analysis was deployed for the first time on an airborne platform. Retrieved CCN spectra show that most particles act as CCN above (0.3 ± 0.05)% supersaturation, which increased to (0.4 ± 0.1)% supersaturation for the most organic-rich aerosol sampled. The aerosol hygroscopicity parameter, κ, was inferred from both measurements of CCN activity and from humidified-particle light extinction, and varied from 0.05 to 0.10 within the emissions plumes. However, κ values were lower than expected from chemical composition measurements, indicating a degree of external mixing or size-dependent chemistry, which was reconciled assuming bimodal, size-dependent composition. The CCN droplet effective water uptake coefficient, γ(cond), was inferred from the data using a comprehensive instrument model, and no significant delay in droplet activation kinetics from the presence of organics was observed, despite a large fraction of hydrocarbon-like SOA present in the aerosol.


Subject(s)
Air Pollutants/chemistry , Petroleum Pollution , Aerosols , Environmental Monitoring , Gulf of Mexico , Kinetics , Organic Chemicals/chemistry , Spectrum Analysis/methods , Wettability
SELECTION OF CITATIONS
SEARCH DETAIL
...