ABSTRACT
The importance of nitric oxide synthase (NOS) in bovine oocyte maturation was investigated. Oocytes were in vitro matured with the NOS inhibitor N(w)-L-nitro-arginine methyl-ester (10(-7), 10(-5) and 10(-3) m L-NAME) and metaphase II (MII) rates and embryo development and quality were assessed. The effect of L-NAME (10(-7) m) during pre-maturation and/or maturation on embryo development and quality was also assessed. L-NAME decreased MII rates (78-82%, p < 0.05) when compared with controls without L-NAME (96%). Cleavage (77-88%, p > 0.05), Day 7 blastocyst rates (34-42%, p > 0.05) and total cell numbers in blastocysts were similar for all groups (146-171 cells, p > 0.05). Day 8 blastocyst TUNEL positive cells (3-4 cells) increased with L-NAME treatment (p < 0.05). For oocytes cultured with L-NAME during pre-maturation and/or maturation, Day 8 blastocyst development (26-34%) and Day 9 hatching rates (15-22%) were similar (p > 0.05) to controls pre-matured and matured without NOS inhibition (33 and 18%, respectively), while total cell numbers (Day 9 hatched blastocysts) increased (264-324 cells, p < 0.05) when compared with the controls (191 cells). TUNEL positive cells increased when NOS was inhibited only during the maturation period (8 cells, p < 0.05) when compared with the other groups (3-4 cells). NO may be involved in meiosis progression to MII and its deficiency during maturation increases apoptosis in embryos produced in vitro. Nitric oxide synthase inhibition during pre-maturation and/or maturation affects embryo quality.
Subject(s)
Cattle , Embryonic Development/drug effects , Enzyme Inhibitors/pharmacology , Meiosis/drug effects , Nitric Oxide Synthase/antagonists & inhibitors , Oocytes/physiology , Animals , Blastocyst/cytology , Blastocyst/drug effects , Blastocyst/physiology , Cell Count , Female , Fertilization in Vitro/veterinary , In Situ Nick-End Labeling , Male , Metaphase/drug effects , NG-Nitroarginine Methyl Ester/pharmacology , Oocytes/cytologyABSTRACT
Nitric oxide (NO) is a chemical messenger generated by the activity of the nitric oxide synthases (NOS). The NOS/NO system appears to be involved in oocyte maturation, but there are few studies on gene expression and protein activity in oocytes of cattle. The present study aimed to investigate gene expression and protein activity of NOS in immature and in vitro matured oocytes of cattle. The influence of pre-maturation culture with butyrolactone I in NOS gene expression was also assessed. The following experiments were performed: (1) detection of the endothelial (eNOS) and inducible (iNOS) isoforms in the ovary by immunohistochemistry; (2) detection of eNOS and iNOS in the oocytes before and after in vitro maturation (IVM) by immunofluorescence; (3) eNOS and iNOS mRNA and protein in immature and in vitro matured oocytes, with or without pre-maturation, by real time PCR and Western blotting, respectively; and (4) NOS activity in immature and in vitro matured oocytes by NADPH-diaphorase. eNOS and iNOS were detected in oocytes within all follicle categories (primary, secondary and tertiary), and other compartments of the ovary and in the cytoplasm of immature and in vitro matured oocytes. Amount of mRNA for both isoforms decreased after IVM, but was maintained after pre-maturation culture. The NOS protein was detected in immature (pre-mature or not) and was still detected in similar amount after pre-maturation and maturation for both isoforms. NOS activity was detected only in part of the immature oocytes. In conclusion, isoforms of NOS (eNOS and iNOS) are present in oocytes of cattle from early folliculogenesis up to maturation; in vitro maturation influences amount of mRNA and NOS activity.
Subject(s)
Cattle/metabolism , Nitric Oxide Synthase Type III/metabolism , Nitric Oxide Synthase Type II/metabolism , Oocytes/metabolism , Animals , Cattle/genetics , Cell Differentiation/genetics , Cell Differentiation/physiology , Cells, Cultured , Enzyme Activation , Female , Gene Expression Regulation, Enzymologic , Isoenzymes/genetics , Isoenzymes/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type III/genetics , Oocytes/enzymology , Oogenesis/genetics , Oogenesis/physiology , Ovarian Follicle/enzymology , Ovarian Follicle/metabolism , Ovarian Follicle/physiology , RNA, Messenger/metabolismABSTRACT
Cyclin dependent kinase inhibitors (CDKIs) may be used for pre-maturation culture, but can accelerate nuclear maturation. The aim of the present research was to compare the effect of butyrolactone I (BLI) alone or combined with roscovitine (ROS) at lesser than typically used concentrations on nuclear maturation kinetics and embryo development. To assess maturation kinetics (Experiment 1), oocytes were cultured in 100 microM BLI (B) or 6.25 microM BLI+12.5 microM ROS (BR) in TCM-199 for 24 h. Oocytes were subsequently submitted to in vitro maturation (IVM) in TCM-199+0.5 microg/ml FSH, 50 microg/ml LH and 10% FCS for another 24 h, during which oocytes were fixed every 3 h. In Experiment 2, oocytes were submitted to 24h pre-maturation treatments, with the inhibitors being diluted in TCM-199 or DMEM. IVM lasted 21 h in the culture media DMEM+0.5 microg/ml FSH, 50 microg/ml LH, 5% FCS and 50 ng/ml EGF. After IVM, oocytes from all groups were fertilized in vitro. Oocytes and sperm (2x10(6) sperm cells/ml) were co-cultured for 18 h. Embryos were co-cultured with granulosa cells in CR2aa for 8 days. All cultures were in droplets under oil, at 38.5 degrees C and 5% CO2 in air. In both experiments, control oocytes (C) were submitted only to IVM. In Experiment 1, at 0 h, C and B oocytes were all (100%) at the germinal vesicle stage (GV) of development. BR had fewer GV oocytes (89%, P<0.05). After 3 h IVM, B and BR had fewer oocytes in GV (84.7 and 79.6%, P>0.05) than C (100%, P<0.05). At 12 h, most oocytes were at intermediate stages (metaphase to telophase I) in all groups (approximately 80%, P>0.05). After 21 (77-89%) and 24 h (85-95%), all groups had similar metaphase II (MII) rates of development (P>0.05). In Experiment 2, cleavage (79-84%, P>0.05) and Day 7 blastocyst rates (26-36%, P>0.05) were similar. After 8 days, the group pre-matured with BR in DMEM had lesser blastocyst rates of development (32.3%) lower than C (40.1%, P<0.05). The other groups were similar to C (35-38%, P>0.05). Hatching rates were similar (10-15%, P>0.05) as were total cell numbers (141-170). In conclusion, BR is less effective in maintaining meiosis block; B and BR accelerate meiosis resumption; and use of pre-maturation medium may affect developmental rates.
Subject(s)
4-Butyrolactone/analogs & derivatives , Cattle/embryology , Embryonic Development/physiology , Oocytes/physiology , Protein Kinase Inhibitors/pharmacology , Purines/pharmacology , 4-Butyrolactone/pharmacology , Animals , Cell Culture Techniques/veterinary , Culture Media , Embryonic Development/drug effects , Female , Fertilization in Vitro/veterinary , Male , Pregnancy , RoscovitineABSTRACT
The effects of prematuration (PM) of bovine oocytes with butyrolactone I (BLI) for 24h on meiosis progression, cell structures and embryo development were assessed. Germinal vesicle (GV) rates decreased (97.4-65.1%, P<0.05) with decreasing BLI concentrations (100-25microM). Without BSA in PM medium, GV rates were similar (98.7-97.2, P>0.05) with low BLI (10-25microM). After in vitro maturation (IVM) for 24h, metaphase II (MII) rates for controls (IVM only) were similar (91.1%, P>0.05) to PM with 10microM BLI in BSA-free medium (B10=91.5%) and 100microM BLI in medium with BSA (B100=92.4%). Meiosis resumption occurred earlier in treated oocytes (71.4-74.3% in GV for B10 and B100, respectively, after 6h IVM compared with 97.3% in controls, P<0.05). By 18h of IVM, most oocytes reached MII (72.0-78.9%, P>0.05). Microtubules and microfilaments were unaffected by BLI. Cortical granules (CG) migration was reversibly blocked by BLI. Mitochondria translocation was partially blocked by PM culture and after IVM more oocytes in B10 and B100 (95.2 and 98.2%, respectively) had mitochondria translocated to a mature pattern (all cytoplasm) than controls (81.5%, P<0.05). Cleavage rates were similar (81-87%, P>0.05), but blastocysts (day 7) decreased in B100 (33.0%, P<0.05) compared with controls and B10 (38.3 and 41.6%, respectively). Day 8 hatching rates (11.0-19.2%) and mean total cell numbers (136-150) were similar (P>0.05). PM did not improve oocyte competence but also did not cause major structural alterations, suggesting that PM may be improved and used to study the mechanisms involved in oocyte differentiation.