Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters










Publication year range
1.
Sci Data ; 11(1): 412, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649380

ABSTRACT

Diploid wild oat Avena longiglumis has nutritional and adaptive traits which are valuable for common oat (A. sativa) breeding. The combination of Illumina, Nanopore and Hi-C data allowed us to assemble a high-quality chromosome-level genome of A. longiglumis (ALO), evidenced by contig N50 of 12.68 Mb with 99% BUSCO completeness for the assembly size of 3,960.97 Mb. A total of 40,845 protein-coding genes were annotated. The assembled genome was composed of 87.04% repetitive DNA sequences. Dotplots of the genome assembly (PI657387) with two published ALO genomes were compared to indicate the conservation of gene order and equal expansion of all syntenic blocks among three genome assemblies. Two recent whole-genome duplication events were characterized in genomes of diploid Avena species. These findings provide new knowledge for the genomic features of A. longiglumis, give information about the species diversity, and will accelerate the functional genomics and breeding studies in oat and related cereal crops.


Subject(s)
Avena , Diploidy , Genome, Plant , Avena/genetics , Chromosomes, Plant
2.
Ann Bot ; 133(5-6): 725-742, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38365451

ABSTRACT

BACKGROUND AND AIMS: The grass genus Urochloa (Brachiaria) sensu lato includes forage crops that are important for beef and dairy industries in tropical and sub-tropical Africa, South America and Oceania/Australia. Economically important species include U. brizantha, U. decumbens, U. humidicola, U. mutica, U. arrecta, U. trichopus, U. mosambicensis and Megathyrsus maximus, all native to the African continent. Perennial growth habits, large, fast growing palatable leaves, intra- and interspecific morphological variability, apomictic reproductive systems and frequent polyploidy are widely shared within the genus. The combination of these traits probably favoured the selection for forage domestication and weediness, but trait emergence across Urochloa cannot be modelled, as a robust phylogenetic assessment of the genus has not been conducted. We aim to produce a phylogeny for Urochloa that includes all important forage species, and identify their closest wild relatives (crop wild relatives). Finally, we will use our phylogeny and available trait data to infer the ancestral states of important forage traits across Urochloa s.l. and model the evolution of forage syndromes across the genus. METHODS: Using a target enrichment sequencing approach (Angiosperm 353), we inferred a species-level phylogeny for Urochloa s.l., encompassing 54 species (~40 % of the genus) and outgroups. Phylogenies were inferred using a multispecies coalescent model and maximum likelihood method. We determined the phylogenetic placement of agriculturally important species and identified their closest wild relatives, or crop wild relatives, based on well-supported monophyly. Further, we mapped key traits associated with Urochloa forage crops to the species tree and estimated ancestral states for forage traits along branch lengths for continuous traits and at ancestral nodes in discrete traits. KEY RESULTS: Agricultural species belong to five independent clades, including U. brizantha and U. decumbens lying in a previously defined species complex. Crop wild relatives were identified for these clades supporting previous sub-generic groupings in Urochloa based on morphology. Using ancestral trait estimation models, we find that five morphological traits that correlate with forage potential (perennial growth habits, culm height, leaf size, a winged rachis and large seeds) independently evolved in forage clades. CONCLUSIONS: Urochloa s.l. is a highly diverse genus that contains numerous species with agricultural potential, including crop wild relatives that are currently underexploited. All forage species and their crop wild relatives naturally occur on the African continent and their conservation across their native distributions is essential. Genomic and phenotypic diversity in forage clade species and their wild relatives need to be better assessed both to develop conservation strategies and to exploit the diversity in the genus for improved sustainability in Urochloa cultivar production.


Subject(s)
Phylogeny , Brachiaria/genetics , Brachiaria/anatomy & histology , Brachiaria/growth & development , Africa , Biological Evolution , Poaceae/genetics , Poaceae/anatomy & histology , Genome, Plant
3.
BMC Plant Biol ; 23(1): 627, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38062402

ABSTRACT

BACKGROUND: The BOP (Bambusoideae, Oryzoideae, and Pooideae) clade of the Poaceae has a common ancestor, with similarities to the genomes of rice, Oryza sativa (2n = 24; genome size 389 Mb) and Brachypodium, Brachypodium distachyon (2n = 10; 271 Mb). We exploit chromosome-scale genome assemblies to show the nature of genomic expansion, structural variation, and chromosomal rearrangements from rice and Brachypodium, to diploids in the tribe Aveneae (e.g., Avena longiglumis, 2n = 2x = 14; 3,961 Mb assembled to 3,850 Mb in chromosomes). RESULTS: Most of the Avena chromosome arms show relatively uniform expansion over the 10-fold to 15-fold genome-size increase. Apart from non-coding sequence diversification and accumulation around the centromeres, blocks of genes are not interspersed with blocks of repeats, even in subterminal regions. As in the tribe Triticeae, blocks of conserved synteny are seen between the analyzed species with chromosome fusion, fission, and nesting (insertion) events showing deep evolutionary conservation of chromosome structure during genomic expansion. Unexpectedly, the terminal gene-rich chromosomal segments (representing about 50 Mb) show translocations between chromosomes during speciation, with homogenization of genome-specific repetitive elements within the tribe Aveneae. Newly-formed intergenomic translocations of similar extent are found in the hexaploid A. sativa. CONCLUSIONS: The study provides insight into evolutionary mechanisms and speciation in the BOP clade, which is valuable for measurement of biodiversity, development of a clade-wide pangenome, and exploitation of genomic diversity through breeding programs in Poaceae.


Subject(s)
Brachypodium , Oryza , Oryza/genetics , Brachypodium/genetics , Avena/genetics , Genome, Plant/genetics , Plant Breeding , Centromere
4.
Front Plant Sci ; 14: 1232588, 2023.
Article in English | MEDLINE | ID: mdl-37868307

ABSTRACT

Introduction: The garden petunia, Petunia hybrida (Solanaceae) is a fertile, diploid, annual hybrid species (2n=14) originating from P. axillaris and P. inflata 200 years ago. To understand the recent evolution of the P. hybrida genome, we examined tandemly repeated or satellite sequences using bioinformatic and molecular cytogenetic analysis. Methods: Raw reads from available genomic assemblies and survey sequences of P. axillaris N (PaxiN), P. inflata S6, (PinfS6), P. hybrida (PhybR27) and the here sequenced P. parodii S7 (PparS7) were used for graph and k-mer based cluster analysis of TAREAN and RepeatExplorer. Analysis of repeat specific monomer lengths and sequence heterogeneity of the major tandem repeat families with more than 0.01% genome proportion were complemented by fluorescent in situ hybridization (FISH) using consensus sequences as probes to chromosomes of all four species. Results: Seven repeat families, PSAT1, PSAT3, PSAT4, PSAT5 PSAT6, PSAT7 and PSAT8, shared high consensus sequence similarity and organisation between the four genomes. Additionally, many degenerate copies were present. FISH in P. hybrida and in the three wild petunias confirmed the bioinformatics data and gave corresponding signals on all or some chromosomes. PSAT1 is located at the ends of all chromosomes except the 45S rDNA bearing short arms of chromosomes II and III, and we classify it as a telomere associated sequence (TAS). It is the most abundant satellite repeat with over 300,000 copies, 0.2% of the genomes. PSAT3 and the variant PSAT7 are located adjacent to the centromere or mid-arm of one to three chromosome pairs. PSAT5 has a strong signal at the end of the short arm of chromosome III in P. axillaris and P.inflata, while in P. hybrida additional interstitial sites were present. PSAT6 is located at the centromeres of chromosomes II and III. PSAT4 and PSAT8 were found with only short arrays. Discussion: These results demonstrate that (i) repeat families occupy distinct niches within chromosomes, (ii) they differ in the copy number, cluster organization and homogenization events, and that (iii) the recent genome hybridization in breeding P. hybrida preserved the chromosomal position of repeats but affected the copy number of repetitive DNA.

5.
Mol Ecol ; 32(15): 4165-4180, 2023 08.
Article in English | MEDLINE | ID: mdl-37264989

ABSTRACT

Clonal propagation enables favourable crop genotypes to be rapidly selected and multiplied. However, the absence of sexual propagation can lead to low genetic diversity and accumulation of deleterious mutations, which may eventually render crops less resilient to pathogens or environmental change. To better understand this trade-off, we characterize the domestication and contemporary genetic diversity of Enset (Ensete ventricosum), an indigenous African relative of bananas (Musa) and a principal starch staple for 20 million Ethiopians. Wild enset reproduction occurs strictly by sexual outcrossing, but for cultivation, it is propagated clonally and associated with diversification and specialization into hundreds of named landraces. We applied tGBS sequencing to generate genome-wide genotypes for 192 accessions from across enset's cultivated distribution, and surveyed 1340 farmers on enset agronomic traits. Overall, reduced heterozygosity in the domesticated lineage was consistent with a domestication bottleneck that retained 37% of wild diversity. However, an excess of putatively deleterious missense mutations at low frequency present as heterozygotes suggested an accumulation of mutational load in clonal domesticated lineages. Our evidence indicates that the major domesticated lineages initially arose through historic sexual recombination associated with a domestication bottleneck, followed by the amplification of favourable genotypes through an extended period of clonal propagation. Among domesticated lineages, we found a significant phylogenetic signal for multiple farmer-identified food, nutrition and disease resistance traits and little evidence of contemporary recombination. The development of future-climate adapted genotypes may require crop breeding, but outcrossing risks exposing deleterious alleles as homozygotes. This trade-off may partly explain the ubiquity and persistence of clonal propagation over recent centuries of comparative climate stability.


Subject(s)
Domestication , Plant Breeding , Agriculture , Genetic Variation , Phenotype , Phylogeny
6.
Methods Mol Biol ; 2672: 3-21, 2023.
Article in English | MEDLINE | ID: mdl-37335467

ABSTRACT

Chromosomes have been studied since the late nineteenth century in the disciplines of cytology and cytogenetics. Analyzing their numbers, features, and dynamics has been tightly linked to the technical development of preparation methods, microscopes, and chemicals to stain them, with latest continuing developments described in this volume. At the end of the twentieth and beginning of the twenty-first centuries, DNA technology, genome sequencing, and bioinformatics have revolutionized how we see, use, and analyze chromosomes. The advent of in situ hybridization has shaped our understanding of genome organization and behavior by linking molecular sequence information with the physical location along chromosomes and genomes. Microscopy is the best technique to accurately determine chromosome number. Many features of chromosomes in interphase nuclei or pairing and disjunction at meiosis, involving physical movement of chromosomes, can only be studied by microscopy. In situ hybridization is the method of choice to characterize the abundance and chromosomal distribution of repetitive sequences that make up the majority of most plant genomes. These most variable components of a genome are found to be species- and occasionally chromosome-specific and give information about evolution and phylogeny. Multicolor fluorescence hybridization and large pools of BAC or synthetic probes can paint chromosomes and we can follow them through evolution involving hybridization, polyploidization, and rearrangements, important at a time when structural variations in the genome are being increasingly recognized. This volume discusses many of the most recent developments in the field of plant cytogenetics and gives carefully compiled protocols and useful resources.


Subject(s)
Chromosomes , DNA , In Situ Hybridization, Fluorescence/methods , Cytogenetics/methods , Genome, Plant
7.
PhytoKeys ; 220: 83-108, 2023.
Article in English | MEDLINE | ID: mdl-37251615

ABSTRACT

Japanese knotweed (Reynoutriajaponica) is native to East Asia, but has been introduced to the West where it is a noxious invasive weed. Taxonomically, Japanese knotweed is placed within subtribe Reynoutriinae (Polygonaceae), which also contains the austral genus Muehlenbeckia (incl. Homalocladium) and north temperate Fallopia. In the current study, we conducted a phylogenetic analysis using sequence data from six markers, two nuclear (LEAFYi2, ITS) and four plastid (matK, rbcL, rps16-trnK and trnL-trnF) to further resolve the evolutionary relationships within this group, using the widest sampling of in-group taxa to date. The results of this analysis confirmed that subtribe Reynoutriinae is a monophyletic group, characterised by the presence of extra-floral, nectariferous glands at the base of leaf petioles. Within the subtribe, four main clades were identified: Reynoutria, Fallopiasect.Parogonum, Fallopia s.s. (including Fallopia sects. Fallopia and Sarmentosae) and Muehlenbeckia. The Fallopia s.s. and Muehlenbeckia clades are sister to one another, while the Fallopiasect.Parogonum clade is immediately basal to them and Reynoutria basal to all three. Fallopia, as currently circumscribed, is paraphyletic as Muehlenbeckia is nested within it. To resolve this, we propose that species of Fallopiasect.Parogonum should be treated as a new genus, Parogonum (Haraldson) Desjardins & J.P.Bailey, gen. et stat. nov. Within Reynoutria, the allied specific and infraspecific taxa that fall under the name Japanese knotweed s.l. form a monophyletic group and their taxonomic status is discussed.

8.
BMC Plant Biol ; 23(1): 218, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37098475

ABSTRACT

BACKGROUND: Avena longiglumis Durieu (2n = 2x = 14) is a wild relative of cultivated oat (Avena sativa, 2n = 6x = 42) with good agronomic and nutritional traits. The plant mitochondrial genome has a complex organization and carries genetic traits of value in exploiting genetic resources, not least male sterility alleles used to generate F1 hybrid seeds. Therefore, we aim to complement the chromosomal-level nuclear and chloroplast genome assemblies of A. longiglumis with the complete assembly of the mitochondrial genome (mitogenome) based on Illumina and ONT long reads, comparing its structure with Poaceae species. RESULTS: The complete mitochondrial genome of A. longiglumis can be represented by one master circular genome being 548,445 bp long with a GC content of 44.05%. It can be represented by linear or circular DNA molecules (isoforms or contigs), with multiple alternative configurations mediated by long (4,100-31,235 bp) and medium (144-792 bp) size repeats. Thirty-five unique protein-coding genes, three unique rRNA genes, and 11 unique tRNA genes are identified. The mitogenome is rich in duplications (up to 233 kb long) and multiple tandem or simple sequence repeats, together accounting for more than 42.5% of the total length. We identify homologous sequences between the mitochondrial, plastid and nuclear genomes, including the exchange of eight plastid-derived tRNA genes, and nuclear-derived retroelement fragments. At least 85% of the mitogenome is duplicated in the A. longiglumis nuclear genome. We identify 269 RNA editing sites in mitochondrial protein-coding genes including stop codons truncating ccmFC transcripts. CONCLUSIONS: Comparative analysis with Poaceae species reveals the dynamic and ongoing evolutionary changes in mitochondrial genome structure and gene content. The complete mitochondrial genome of A. longiglumis completes the last link of the oat reference genome and lays the foundation for oat breeding and exploiting the biodiversity in the genus.


Subject(s)
Avena , Genome, Mitochondrial , Avena/genetics , Diploidy , Genome, Mitochondrial/genetics , Plant Breeding , Genome, Plant/genetics , Phylogeny
9.
Ann Bot ; 131(1): 1-10, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36282971

ABSTRACT

BACKGROUND: Most, if not all, green plant (Virdiplantae) species including angiosperms and ferns are polyploids themselves or have ancient polyploid or whole genome duplication signatures in their genomes. Polyploids are not only restricted to our major crop species such as wheat, maize, potato and the brassicas, but also occur frequently in wild species and natural habitats. Polyploidy has thus been viewed as a major driver in evolution, and its influence on genome and chromosome evolution has been at the centre of many investigations. Mechanistic models of the newly structured genomes are being developed that incorporate aspects of sequence evolution or turnover (low-copy genes and regulatory sequences, as well as repetitive DNAs), modification of gene functions, the re-establishment of control of genes with multiple copies, and often meiotic chromosome pairing, recombination and restoration of fertility. SCOPE: World-wide interest in how green plants have evolved under different conditions - whether in small, isolated populations, or globally - suggests that gaining further insight into the contribution of polyploidy to plant speciation and adaptation to environmental changes is greatly needed. Forward-looking research and modelling, based on cytogenetics, expression studies, and genomics or genome sequencing analyses, discussed in this Special Issue of the Annals of Botany, consider how new polyploids behave and the pathways available for genome evolution. They address fundamental questions about the advantages and disadvantages of polyploidy, the consequences for evolution and speciation, and applied questions regarding the spread of polyploids in the environment and challenges in breeding and exploitation of wild relatives through introgression or resynthesis of polyploids. CONCLUSION: Chromosome number, genome size, repetitive DNA sequences, genes and regulatory sequences and their expression evolve following polyploidy - generating diversity and possible novel traits and enabling species diversification. There is the potential for ever more polyploids in natural, managed and disturbed environments under changing climates and new stresses.


Subject(s)
Evolution, Molecular , Genome, Plant , Chromosomes , Plants/genetics , Polyploidy
10.
Ann Bot ; 131(1): 87-108, 2023 02 07.
Article in English | MEDLINE | ID: mdl-34874999

ABSTRACT

BACKGROUND AND AIMS: Diploid and polyploid Urochloa (including Brachiaria, Panicum and Megathyrsus species) C4 tropical forage grasses originating from Africa are important for food security and the environment, often being planted in marginal lands worldwide. We aimed to characterize the nature of their genomes, the repetitive DNA and the genome composition of polyploids, leading to a model of the evolutionary pathways within the group including many apomictic species. METHODS: Some 362 forage grass accessions from international germplasm collections were studied, and ploidy was determined using an optimized flow cytometry method. Whole-genome survey sequencing and molecular cytogenetic analysis were used to identify chromosomes and genomes in Urochloa accessions belonging to the 'brizantha' and 'humidicola' agamic complexes and U. maxima. KEY RESULTS: Genome structures are complex and variable, with multiple ploidies and genome compositions within the species, and no clear geographical patterns. Sequence analysis of nine diploid and polyploid accessions enabled identification of abundant genome-specific repetitive DNA motifs. In situ hybridization with a combination of repetitive DNA and genomic DNA probes identified evolutionary divergence and allowed us to discriminate the different genomes present in polyploids. CONCLUSIONS: We suggest a new coherent nomenclature for the genomes present. We develop a model of evolution at the whole-genome level in diploid and polyploid accessions showing processes of grass evolution. We support the retention of narrow species concepts for Urochloa brizantha, U. decumbens and U. ruziziensis, and do not consider diploids and polyploids of single species as cytotypes. The results and model will be valuable in making rational choices of parents for new hybrids, assist in use of the germplasm for breeding and selection of Urochloa with improved sustainability and agronomic potential, and assist in measuring and conserving biodiversity in grasslands.


Subject(s)
Brachiaria , Poaceae , Poaceae/genetics , Brachiaria/genetics , Polyploidy , Ploidies , Genomics
11.
Ann Bot ; 131(1): 215-228, 2023 02 07.
Article in English | MEDLINE | ID: mdl-35639931

ABSTRACT

BACKGROUND AND AIMS: Tandemly repeated DNA and transposable elements represent most of the DNA in higher plant genomes. High-throughput sequencing allows a survey of the DNA in a genome, but whole-genome assembly can miss a substantial fraction of highly repeated sequence motifs. Chrysanthemum nankingense (2n = 2x = 18; genome size = 3.07 Gb; Asteraceae), a diploid reference for the many auto- and allopolyploids in the genus, was considered as an ancestral species and serves as an ornamental plant and high-value food. We aimed to characterize the major repetitive DNA motifs, understand their structure and identify key features that are shaped by genome and sequence evolution. METHODS: Graph-based clustering with RepeatExplorer was used to identify and classify repetitive motifs in 2.14 millions of 250-bp paired-end Illumina reads from total genomic DNA of C. nankingense. Independently, the frequency of all canonical motifs k-bases long was counted in the raw read data and abundant k-mers (16, 21, 32, 64 and 128) were extracted and assembled to generate longer contigs for repetitive motif identification. For comparison, long terminal repeat retrotransposons were checked in the published C. nankingense reference genome. Fluorescent in situ hybridization was performed to show the chromosomal distribution of the main types of repetitive motifs. KEY RESULTS: Apart from rDNA (0.86 % of the total genome), a few microsatellites (0.16 %), and telomeric sequences, no highly abundant tandem repeats were identified. There were many transposable elements: 40 % of the genome had sequences with recognizable domains related to transposable elements. Long terminal repeat retrotransposons showed widespread distribution over chromosomes, although different sequence families had characteristic features such as abundance at or exclusion from centromeric or subtelomeric regions. Another group of very abundant repetitive motifs, including those most identified as low-complexity sequences (9.07 %) in the genome, showed no similarity to known sequence motifs or tandemly repeated elements. CONCLUSIONS: The Chrysanthemum genome has an unusual structure with a very low proportion of tandemly repeated sequences (~1.02 %) in the genome, and a high proportion of low-complexity sequences, most likely degenerated remains of transposable elements. Identifying the presence, nature and genomic organization of major genome fractions enables inference of the evolutionary history of sequences, including degeneration and loss, critical to understanding biodiversity and diversification processes in the genomes of diploid and polyploid Chrysanthemum, Asteraceae and plants more widely.


Subject(s)
Chrysanthemum , Retroelements , In Situ Hybridization, Fluorescence , Chrysanthemum/genetics , DNA Transposable Elements , Repetitive Sequences, Nucleic Acid , Genomics , Genome, Plant , Plants/genetics , Evolution, Molecular
12.
Front Plant Sci ; 13: 1026364, 2022.
Article in English | MEDLINE | ID: mdl-36483968

ABSTRACT

Structural chromosome rearrangements involving translocations, fusions and fissions lead to evolutionary variation between species and potentially reproductive isolation and variation in gene expression. While the wheats (Triticeae, Poaceae) and oats (Aveneae) all maintain a basic chromosome number of x=7, genomes of oats show frequent intergenomic translocations, in contrast to wheats where these translocations are relatively rare. We aimed to show genome structural diversity and genome relationships in tetraploid, hexaploid and octoploid Avena species and amphiploids, establishing patterns of intergenomic translocations across different oat taxa using fluorescence in situ hybridization (FISH) with four well-characterized repetitive DNA sequences: pAs120, AF226603, Ast-R171 and Ast-T116. In A. agadiriana (2n=4x=28), the selected probes hybridized to all chromosomes indicating that this species originated from one (autotetraploid) or closely related ancestors with the same genomes. Hexaploid amphiploids were confirmed as having the genomic composition AACCDD, while octoploid amphiploids showed three different genome compositions: AACCCCDD, AAAACCDD or AABBCCDD. The A, B, C, and D genomes of oats differ significantly in their involvement in non-centromeric, intercalary translocations. There was a predominance of distal intergenomic translocations from the C- into the D-genome chromosomes. Translocations from A- to C-, or D- to C-genome chromosomes were less frequent, proving that at least some of the translocations in oat polyploids are non-reciprocal. Rare translocations from A- to D-, D- to A- and C- to B-genome chromosomes were also visualized. The fundamental research has implications for exploiting genomic biodiversity in oat breeding through introgression from wild species potentially with contrasting chromosomal structures and hence deleterious segmental duplications or large deletions in amphiploid parental lines.

13.
Front Plant Sci ; 13: 952968, 2022.
Article in English | MEDLINE | ID: mdl-36186069

ABSTRACT

Cenchrus ciliaris is an apomictic, allotetraploid pasture grass widely distributed in the tropical and subtropical regions of Africa and Asia. In this study, we aimed to investigate the genomic organization and characterize some of the repetitive DNA sequences in this species. Due to the apomictic propagation, various aneuploid genotypes are found, and here, we analyzed a 2n = 4x + 3 = 39 accession. The physical mapping of Ty1-copia and Ty3-gypsy retroelements through fluorescence in situ hybridization with a global assessment of 5-methylcytosine DNA methylation through immunostaining revealed the genome-wide distribution pattern of retroelements and their association with DNA methylation. Approximately one-third of Ty1-copia sites overlapped or spanned centromeric DAPI-positive heterochromatin, while the centromeric regions and arms of some chromosomes were labeled with Ty3-gypsy. Most of the retroelement sites overlapped with 5-methylcytosine signals, except for some Ty3-gypsy on the arms of chromosomes, which did not overlap with anti-5-mC signals. Universal retrotransposon probes did not distinguish genomes of C. ciliaris showing signals in pericentromeric regions of all 39 chromosomes, unlike highly abundant repetitive DNA motifs found in survey genome sequences of C. ciliaris using graph-based clustering. The probes developed from RepeatExplorer clusters gave strong in situ hybridization signals, mostly in pericentromeric regions of about half of the chromosomes, and we suggested that they differentiate the two ancestral genomes in the allotetraploid C. ciliaris, likely having different repeat sequence variants amplified before the genomes came together in the tetraploid.

14.
Int J Mol Sci ; 23(13)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35806276

ABSTRACT

Boesenbergia rotunda (Zingiberaceae), is a high-value culinary and ethno-medicinal plant of Southeast Asia. The rhizomes of this herb have a high flavanone and chalcone content. Here we report the genome analysis of B. rotunda together with a complete genome sequence as a hybrid assembly. B. rotunda has an estimated genome size of 2.4 Gb which is assembled as 27,491 contigs with an N50 size of 12.386 Mb. The highly heterozygous genome encodes 71,072 protein-coding genes and has a 72% repeat content, with class I TEs occupying ~67% of the assembled genome. Fluorescence in situ hybridization of the 18 chromosome pairs at the metaphase showed six sites of 45S rDNA and two sites of 5S rDNA. An SSR analysis identified 238,441 gSSRs and 4604 EST-SSRs with 49 SSR markers common among related species. Genome-wide methylation percentages ranged from 73% CpG, 36% CHG and 34% CHH in the leaf to 53% CpG, 18% CHG and 25% CHH in the embryogenic callus. Panduratin A biosynthetic unigenes were most highly expressed in the watery callus. B rotunda has a relatively large genome with a high heterozygosity and TE content. This assembly and data (PRJNA71294) comprise a source for further research on the functional genomics of B. rotunda, the evolution of the ginger plant family and the potential genetic selection or improvement of gingers.


Subject(s)
Zingiber officinale , Zingiberaceae , Biosynthetic Pathways , DNA, Ribosomal , Flavonoids , Zingiber officinale/genetics , In Situ Hybridization, Fluorescence , Microsatellite Repeats/genetics , Zingiberaceae/genetics
15.
Gigascience ; 112022 04 30.
Article in English | MEDLINE | ID: mdl-35488861

ABSTRACT

BACKGROUND: Ensete glaucum (2n = 2x = 18) is a giant herbaceous monocotyledonous plant in the small Musaceae family along with banana (Musa). A high-quality reference genome sequence assembly of E. glaucum is a resource for functional and evolutionary studies of Ensete, Musaceae, and the Zingiberales. FINDINGS: Using Oxford Nanopore Technologies, chromosome conformation capture (Hi-C), Illumina and RNA survey sequence, supported by molecular cytogenetics, we report a high-quality 481.5 Mb genome assembly with 9 pseudo-chromosomes and 36,836 genes. A total of 55% of the genome is composed of repetitive sequences with predominantly LTR-retroelements (37%) and DNA transposons (7%). The single 5S ribosomal DNA locus had an exceptionally long monomer length of 1,056 bp, more than twice that of the monomers at multiple loci in Musa. A tandemly repeated satellite (1.1% of the genome, with no similar sequence in Musa) was present around all centromeres, together with a few copies of a long interspersed nuclear element (LINE) retroelement. The assembly enabled us to characterize in detail the chromosomal rearrangements occurring between E. glaucum and the x = 11 species of Musa. One E. glaucum chromosome has the same gene content as Musa acuminata, while others show multiple, complex, but clearly defined evolutionary rearrangements in the change between x= 9 and 11. CONCLUSIONS: The advance towards a Musaceae pangenome including E. glaucum, tolerant of extreme environments, makes a complete set of gene alleles, copy number variation, and a reference for structural variation available for crop breeding and understanding environmental responses. The chromosome-scale genome assembly shows the nature of chromosomal fusion and translocation events during speciation, and features of rapid repetitive DNA change in terms of copy number, sequence, and genomic location, critical to understanding its role in diversity and evolution.


Subject(s)
Musa , Musaceae , Chromosomes , DNA Copy Number Variations , DNA Transposable Elements , Musa/genetics , Musaceae/genetics , Plant Breeding , Retroelements , Sequence Analysis, DNA
16.
Chromosome Res ; 29(3-4): 373-390, 2021 12.
Article in English | MEDLINE | ID: mdl-34657216

ABSTRACT

Chromosome identification is essential for linking sequence and chromosomal maps, verifying sequence assemblies, showing structural variations and tracking inheritance or recombination of chromosomes and chromosomal segments during evolution and breeding programs. Unfortunately, identification of individual chromosomes and chromosome arms has been a major challenge for some economically important crop species with a near-continuous chromosome size range and similar morphology. Here, we developed oligonucleotide-based chromosome-specific probes that enabled us to establish a reference chromosome identification system for oil palm (Elaeis guineensis Jacq., 2n = 32). Massive oligonucleotide sequence pools were anchored to individual chromosome arms using dual and triple fluorescent in situ hybridization (EgOligoFISH). Three fluorescently tagged probe libraries were developed to contain, in total 52,506 gene-rich single-copy 47-mer oligonucleotides spanning each 0.2-0.5 Mb across strategically placed chromosome regions. They generated 19 distinct FISH signals and together with rDNA probes enabled identification of all 32 E. guineensis chromosome arms. The probes were able to identify individual homoeologous chromosome regions in the related Arecaceae palm species: American oil palm (Elaeis oleifera), date palm (Phoenix dactylifera) and coconut (Cocos nucifera) showing the comparative organization and concerted evolution of genomes in the Arecaceae. The oligonucleotide probes developed here provide a valuable approach to chromosome arm identification and allow tracking chromosome transfer in hybridization and breeding programs in oil palm, as well as comparative studies within Arecaceae.


Subject(s)
Arecaceae , Arecaceae/genetics , Chromosomes , Hybridization, Genetic , In Situ Hybridization, Fluorescence , Oligonucleotides
17.
Genes (Basel) ; 12(7)2021 06 23.
Article in English | MEDLINE | ID: mdl-34201593

ABSTRACT

Urochloa (including Brachiaria, Megathyrus and some Panicum) tropical grasses are native to Africa and are now, after selection and breeding, planted worldwide, particularly in South America, as important forages with huge potential for further sustainable improvement and conservation of grasslands. We aimed to develop an optimized approach to determine ploidy of germplasm collection of this tropical forage grass group using dried leaf material, including approaches to collect, dry and preserve plant samples for flow cytometry analysis. Our methods enable robust identification of ploidy levels (coefficient of variation of G0/G1 peaks, CV, typically <5%). Ploidy of some 348 forage grass accessions (ploidy range from 2x to 9x), from international genetic resource collections, showing variation in basic chromosome numbers and reproduction modes (apomixis and sexual), were determined using our defined standard protocol. Two major Urochloa agamic complexes are used in the current breeding programs at CIAT and EMBRAPA: the 'brizantha' and 'humidicola' agamic complexes are variable, with multiple ploidy levels. Some U. brizantha accessions have odd level of ploidy (5x), and the relative differences in fluorescence values of the peak positions between adjacent cytotypes is reduced, thus more precise examination of this species is required. Ploidy measurement of U. humidicola revealed aneuploidy.


Subject(s)
Flow Cytometry , Plant Leaves/genetics , Ploidies , Poaceae/genetics , Genome, Plant/genetics
18.
Front Plant Sci ; 12: 689307, 2021.
Article in English | MEDLINE | ID: mdl-34234799

ABSTRACT

Pararetroviruses, taxon Caulimoviridae, are typical of retroelements with reverse transcriptase and share a common origin with retroviruses and LTR retrotransposons, presumably dating back 1.6 billion years and illustrating the transition from an RNA to a DNA world. After transcription of the viral genome in the host nucleus, viral DNA synthesis occurs in the cytoplasm on the generated terminally redundant RNA including inter- and intra-molecule recombination steps rather than relying on nuclear DNA replication. RNA recombination events between an ancestral genomic retroelement with exogenous RNA viruses were seminal in pararetrovirus evolution resulting in horizontal transmission and episomal replication. Instead of active integration, pararetroviruses use the host DNA repair machinery to prevail in genomes of angiosperms, gymnosperms and ferns. Pararetrovirus integration - leading to Endogenous ParaRetroViruses, EPRVs - by illegitimate recombination can happen if their sequences instead of homologous host genomic sequences on the sister chromatid (during mitosis) or homologous chromosome (during meiosis) are used as template. Multiple layers of RNA interference exist regulating episomal and chromosomal forms of the pararetrovirus. Pararetroviruses have evolved suppressors against this plant defense in the arms race during co-evolution which can result in deregulation of plant genes. Small RNAs serve as signaling molecules for Transcriptional and Post-Transcriptional Gene Silencing (TGS, PTGS) pathways. Different populations of small RNAs comprising 21-24 nt and 18-30 nt in length have been reported for Citrus, Fritillaria, Musa, Petunia, Solanum and Beta. Recombination and RNA interference are driving forces for evolution and regulation of EPRVs.

19.
Ann Bot ; 128(3): 281-299, 2021 08 26.
Article in English | MEDLINE | ID: mdl-33729490

ABSTRACT

BACKGROUND AND AIMS: Endogenous pararetroviruses (EPRVs) are widespread components of plant genomes that originated from episomal DNA viruses of the Caulimoviridae family. Due to fragmentation and rearrangements, most EPRVs have lost their ability to replicate through reverse transcription and to initiate viral infection. Similar to the closely related retrotransposons, extant EPRVs were retained and often amplified in plant genomes for several million years. Here, we characterize the complete genomic EPRV fraction of the crop sugar beet (Beta vulgaris, Amaranthaceae) to understand how they shaped the beet genome and to suggest explanations for their absent virulence. METHODS: Using next- and third-generation sequencing data and genome assembly, we reconstructed full-length in silico representatives for the three host-specific EPRVs (beetEPRVs) in the B. vulgaris genome. Focusing on the endogenous caulimovirid beetEPRV3, we investigated its chromosomal localization, abundance and distribution by fluorescent in situ and Southern hybridization. KEY RESULTS: Full-length beetEPRVs range between 7.5 and 10.7 kb in size, are heterogeneous in structure and sequence, and occupy about 0.3 % of the beet genome. Although all three beetEPRVs were assigned to the florendoviruses, they showed variably arranged protein-coding domains, different fragmentation, and preferences for diverse sequence contexts. We observed small RNAs that specifically target the individual beetEPRVs, indicating stringent epigenetic suppression. BeetEPRV3 sequences occur along all sugar beet chromosomes, preferentially in the vicinity of each other and are associated with heterochromatic, centromeric and intercalary satellite DNAs. BeetEPRV3 members also exist in genomes of related wild species, indicating an initial beetEPRV3 integration 13.4-7.2 million years ago. CONCLUSIONS: Our study in beet illustrates the variability of EPRV structure and sequence in a single host genome. Evidence of sequence fragmentation and epigenetic silencing implies possible plant strategies to cope with long-term persistence of EPRVs, including amplification, fixation in the heterochromatin, and containment of EPRV virulence.


Subject(s)
Beta vulgaris , Beta vulgaris/genetics , Centromere , Genome, Plant/genetics , Retroelements , Sugars
20.
Front Plant Sci ; 12: 756182, 2021.
Article in English | MEDLINE | ID: mdl-35069618

ABSTRACT

Enset (Ensete ventricosum) is a multipurpose crop extensively cultivated in southern and southwestern Ethiopia for human food, animal feed, and fiber. It has immense contributions to the food security and rural livelihoods of 20 million people. Several distinct enset landraces are cultivated for their uses in traditional medicine. These landraces are vulnerable to various human-related activities and environmental constraints. The genetic diversity among the landraces is not verified to plan conservation strategy. Moreover, it is currently unknown whether medicinal landraces are genetically differentiated from other landraces. Here, we characterize the genetic diversity of medicinal enset landraces to support effective conservation and utilization of their diversity. We evaluated the genetic diversity of 51 enset landraces, of which 38 have reported medicinal value. A total of 38 alleles across the 15 simple sequence repeat (SSR) loci and a moderate level of genetic diversity (He = 0.47) were detected. Analysis of molecular variation (AMOVA) revealed that only 2.4% of the total genetic variation was contributed by variation among the medicinal and non-medicinal groups of landraces, with an FST of 0.024. A neighbor-joining tree showed four separate clusters with no correlation to the use-values of the landraces. Except for two, all "medicinal" landraces with distinct vernacular names were found to be genetically different, showing that vernacular names are a good indicator of genetic distinctiveness in these specific groups of landraces. The discriminant analysis of the principal components also confirmed the absence of distinct clustering between the two groups. We found that enset landraces were clustered irrespective of their use-value, showing no evidence for genetic differentiation between the enset grown for 'medicinal' uses and non-medicinal landraces. This suggests that enset medicinal properties may be restricted to a more limited number of genotypes, might have resulted from the interaction of genotype with the environment or management practice, or partly misreported. The study provides baseline information that promotes further investigations in exploiting the medicinal value of these specific landraces.

SELECTION OF CITATIONS
SEARCH DETAIL
...