Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
Add more filters










Publication year range
3.
Int J Biol Macromol ; 50(4): 1175-82, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22126991

ABSTRACT

Asparagine deamidation is one of the important determinants of protein thermostability. Here, structure based mutagenesis has been done in order to probe the role of Asn residues in thermostability of a Ca independent Bacillus sp. KR-8104 α-amylase (BKA). Residues involved in potential deamidation processes have been selected and replaced using a site directed mutagenesis. Fourteen different variants were tested for thermostability by measuring residual activities after incubation at high temperature. In comparison to the wild-type enzyme, four mutated variants are able to increase the half life of the protein at high temperatures. The highest stabilization resulted from the substitution of asparatate in place of asparagine at position 112, leading to a nearly fivefold increase of the enzyme's half-life at 70°C. Also replacement of Asn129 to aspartic acid and Asn312 to serine markedly increased the half-life of the enzyme at 70°C indicating that the deamination of these residues may have a deleterious effect on BKA.


Subject(s)
Asparagine , Bacillus/enzymology , Mutant Proteins/chemistry , Mutation , Temperature , alpha-Amylases/chemistry , Amino Acid Substitution , Enzyme Activation , Enzyme Stability , Kinetics , Models, Molecular , Mutagenesis, Site-Directed , Mutant Proteins/genetics , Mutant Proteins/metabolism , Protein Conformation , alpha-Amylases/genetics , alpha-Amylases/metabolism
4.
Innate Immun ; 18(1): 100-11, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21310790

ABSTRACT

Nucleotide-binding oligomerization domain-containing protein (NOD)1 and NOD2 are intracellular pattern recognition receptors (PRRs) of the nucleotide-binding domain and leucine-rich repeat containing (NLR) gene family involved in innate immune responses. Their centrally located NACHT domain displays ATPase activity and is necessary for activation and oligomerization leading to inflammatory signaling responses. Mutations affecting key residues of the ATPase domain of NOD2 are linked to severe auto-inflammatory diseases, such as Blau syndrome and early-onset sarcoidosis. By mutational dissection of the ATPase domain function, we show that the NLR-specific extended Walker B box (DGhDE) can functionally replace the canonical Walker B sequence (DDhWD) found in other ATPases. A requirement for an intact Walker A box and the magnesium-co-ordinating aspartate of the classical Walker B box suggest that an initial ATP hydrolysis step is necessary for activation of both NOD1 and NOD2. In contrast, a Blau-syndrome associated mutation located in the extended Walker B box of NOD2 that results in higher autoactivation and ligand-induced signaling does not affect NOD1 function. Moreover, mutation of a conserved histidine in the NACHT domain also has contrasting effects on NOD1 and NOD2 mediated NF-κB activation. We conclude that these two NLRs employ different modes of activation and propose distinct models for activation of NOD1 and NOD2.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , Cranial Nerve Diseases/genetics , Nod1 Signaling Adaptor Protein/genetics , Nod2 Signaling Adaptor Protein/genetics , Sarcoidosis/genetics , Synovitis/genetics , Uveitis/genetics , Adaptor Proteins, Signal Transducing/genetics , Apoptosis Regulatory Proteins/genetics , Arthritis , Cranial Nerve Diseases/immunology , DNA Mutational Analysis , HeLa Cells , Humans , Immunity, Innate , Mutation/genetics , NF-kappa B/genetics , NF-kappa B/metabolism , NLR Proteins , Nod1 Signaling Adaptor Protein/immunology , Nod1 Signaling Adaptor Protein/metabolism , Nod2 Signaling Adaptor Protein/immunology , Nod2 Signaling Adaptor Protein/metabolism , Polymorphism, Genetic , Protein Structure, Tertiary/genetics , Sarcoidosis/immunology , Signal Transduction/genetics , Synovitis/immunology , Transcriptional Activation/genetics , Uveitis/immunology
5.
J Mol Biol ; 413(4): 790-803, 2011 Nov 04.
Article in English | MEDLINE | ID: mdl-21978668

ABSTRACT

The initial line of defense against infection is sustained by the innate immune system. Together, membrane-bound Toll-like receptors and cytosolic nucleotide-binding domain and leucine-rich repeat-containing receptors (NLR) play key roles in the innate immune response by detecting bacterial and viral invaders as well as endogenous stress signals. NLRs are multi-domain proteins with varying N-terminal effector domains that are responsible for regulating downstream signaling events. Here, we report the structure and dynamics of the N-terminal pyrin domain of NLRP12 (NLRP12 PYD) determined using NMR spectroscopy. NLRP12 is a non-inflammasome NLR that has been implicated in the regulation of Toll-like receptor-dependent nuclear factor-κB activation. NLRP12 PYD adopts a typical six-helical bundle death domain fold. By direct comparison with other PYD structures, we identified hydrophobic residues that are essential for the stable fold of the NLRP PYD family. In addition, we report the first in vitro confirmed non-homotypic PYD interaction between NLRP12 PYD and the pro-apoptotic protein Fas-associated factor 1 (FAF-1), which links the innate immune system to apoptotic signaling. Interestingly, all residues that participate in this protein:protein interaction are confined to the α2-α3 surface, a region of NLRP12 PYD that differs most between currently reported NLRP PYD structures. Finally, we experimentally highlight a significant role for tryptophan 45 in the interaction between NLRP12 PYD and the FAF-1 UBA domain.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/metabolism , Amino Acid Sequence , Apoptosis Regulatory Proteins , Humans , Kinetics , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Conformation , Protein Folding , Protein Interaction Mapping
6.
Nat Med ; 17(3): 377-82, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21336284

ABSTRACT

Huntington's disease is an inherited and incurable neurodegenerative disorder caused by an abnormal polyglutamine (polyQ) expansion in huntingtin (encoded by HTT). PolyQ length determines disease onset and severity, with a longer expansion causing earlier onset. The mechanisms of mutant huntingtin-mediated neurotoxicity remain unclear; however, mitochondrial dysfunction is a key event in Huntington's disease pathogenesis. Here we tested whether mutant huntingtin impairs the mitochondrial fission-fusion balance and thereby causes neuronal injury. We show that mutant huntingtin triggers mitochondrial fragmentation in rat neurons and fibroblasts of individuals with Huntington's disease in vitro and in a mouse model of Huntington's disease in vivo before the presence of neurological deficits and huntingtin aggregates. Mutant huntingtin abnormally interacts with the mitochondrial fission GTPase dynamin-related protein-1 (DRP1) in mice and humans with Huntington's disease, which, in turn, stimulates its enzymatic activity. Mutant huntingtin-mediated mitochondrial fragmentation, defects in anterograde and retrograde mitochondrial transport and neuronal cell death are all rescued by reducing DRP1 GTPase activity with the dominant-negative DRP1 K38A mutant. Thus, DRP1 might represent a new therapeutic target to combat neurodegeneration in Huntington's disease.


Subject(s)
GTP Phosphohydrolases/metabolism , Microtubule-Associated Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Mutation , Nerve Tissue Proteins/metabolism , Nuclear Proteins/metabolism , Animals , Disease Models, Animal , Dynamins , Humans , Huntingtin Protein , Mice , Mitochondria/enzymology , Nerve Tissue Proteins/genetics , Nuclear Proteins/genetics , Protein Binding
7.
J Biol Chem ; 286(10): 8448-8458, 2011 Mar 11.
Article in English | MEDLINE | ID: mdl-21216948

ABSTRACT

Pathogenesis by Bacillus anthracis requires coordination between two distinct activities: plasmid-encoded virulence factor expression (which protects vegetative cells from immune surveillance during outgrowth and replication) and chromosomally encoded sporulation (required only during the final stages of infection). Sporulation is regulated by at least five sensor histidine kinases that are activated in response to various environmental cues. One of these kinases, BA2291, harbors a sensor domain that has ∼35% sequence identity with two plasmid proteins, pXO1-118 and pXO2-61. Because overexpression of pXO2-61 (or pXO1-118) inhibits sporulation of B. anthracis in a BA2291-dependent manner, and pXO2-61 expression is strongly up-regulated by the major virulence gene regulator, AtxA, it was suggested that their function is to titrate out an environmental signal that would otherwise promote untimely sporulation. To explore this hypothesis, we determined crystal structures of both plasmid-encoded proteins. We found that they adopt a dimeric globin fold but, most unusually, do not bind heme. Instead, they house a hydrophobic tunnel and hydrophilic chamber that are occupied by fatty acid, which engages a conserved arginine and chloride ion via its carboxyl head group. In vivo, these domains may therefore recognize changes in fatty acid synthesis, chloride ion concentration, and/or pH. Structure-based comparisons with BA2291 suggest that it binds ligand and dimerizes in an analogous fashion, consistent with the titration hypothesis. Analysis of newly sequenced bacterial genomes points to the existence of a much broader family of non-heme, globin-based sensor domains, with related but distinct functionalities, that may have evolved from an ancestral heme-linked globin.


Subject(s)
Bacillus anthracis/chemistry , Bacterial Proteins/chemistry , Protein Folding , Protein Multimerization/physiology , Trans-Activators/chemistry , Virulence Factors/chemistry , Bacillus anthracis/genetics , Bacillus anthracis/metabolism , Bacillus anthracis/pathogenicity , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Crystallography, X-Ray , Protein Structure, Quaternary , Protein Structure, Tertiary , Trans-Activators/genetics , Trans-Activators/metabolism , Virulence Factors/genetics , Virulence Factors/metabolism
8.
J Virol ; 85(4): 1793-803, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21123390

ABSTRACT

Herpes simplex virus (HSV) glycoprotein B (gB) is an integral part of the multicomponent fusion system required for virus entry and cell-cell fusion. Here we investigated the mechanism of viral neutralization by the monoclonal antibody (MAb) 2c, which specifically recognizes the gB of HSV type 1 (HSV-1) and HSV-2. Binding of MAb 2c to a type-common discontinuous epitope of gB resulted in highly efficient neutralization of HSV at the postbinding/prefusion stage and completely abrogated the viral cell-to-cell spread in vitro. Mapping of the antigenic site recognized by MAb 2c to the recently solved crystal structure of the HSV-1 gB ectodomain revealed that its discontinuous epitope is only partially accessible within the observed multidomain trimer conformation of gB, likely representing its postfusion conformation. To investigate how MAb 2c may interact with gB during membrane fusion, we characterized the properties of monovalent (Fab and scFv) and bivalent [IgG and F(ab')(2)] derivatives of MAb 2c. Our data show that the neutralization capacity of MAb 2c is dependent on cross-linkage of gB trimers. As a result, only bivalent derivatives of MAb 2c exhibited high neutralizing activity in vitro. Notably, bivalent MAb 2c not only was capable of preventing mucocutaneous disease in severely immunodeficient NOD/SCID mice upon vaginal HSV-1 challenge but also protected animals even with neuronal HSV infection. We also report for the first time that an anti-gB specific monoclonal antibody prevents HSV-1-induced encephalitis entirely independently from complement activation, antibody-dependent cellular cytotoxicity, and cellular immunity. This indicates the potential for further development of MAb 2c as an anti-HSV drug.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Herpesvirus 1, Human/immunology , Herpesvirus 2, Human/immunology , Viral Envelope Proteins/immunology , Animals , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/chemistry , Antibody Specificity , COS Cells , Chlorocebus aethiops , Encephalitis, Herpes Simplex/immunology , Encephalitis, Herpes Simplex/prevention & control , Epitope Mapping , Epitopes/immunology , Female , Herpes Genitalis/immunology , Herpes Genitalis/prevention & control , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred NOD , Mice, SCID , Models, Molecular , Neutralization Tests , Peptide Mapping , Vero Cells , Viral Envelope Proteins/chemistry
9.
Biochemistry ; 50(9): 1556-66, 2011 Mar 08.
Article in English | MEDLINE | ID: mdl-21155540

ABSTRACT

PQQ is an exogenous, tricyclic, quino-cofactor for a number of bacterial dehydrogenases. The final step of PQQ formation is catalyzed by PqqC, a cofactorless oxidase. This study focuses on the activation of molecular oxygen in an enzyme active site without metal or cofactor and has identified a specific oxygen binding and activating pocket in PqqC. The active site variants H154N, Y175F,S, and R179S were studied with the goal of defining the site of O(2) binding and activation. Using apo-glucose dehydrogenase to assay for PQQ production, none of the mutants in this "O(2) core" are capable of PQQ/PQQH(2) formation. Spectrophotometric assays give insight into the incomplete reactions being catalyzed by these mutants. Active site variants Y175F, H154N, and R179S form a quinoid intermediate (Figure 1) anaerobically. Y175S is capable of proceeding further from quinoid to quinol, whereas Y175F, H154N, and R179S require O(2) to produce the quinol species. None of the mutations precludes substrate/product binding or oxygen binding. Assays for the oxidation of PQQH(2) to PQQ show that these O(2) core mutants are incapable of catalyzing a rate increase over the reaction in buffer, whereas H154N can catalyze the oxidation of PQQH(2) to PQQ in the presence of H(2)O(2) as an electron acceptor. Taken together, these data indicate that none of the targeted mutants can react fully to form quinone even in the presence of bound O(2). The data indicate a successful separation of oxidative chemistry from O(2) binding. The residues H154, Y175, and R179 are proposed to form a core O(2) binding structure that is essential for efficient O(2) activation.


Subject(s)
Bacterial Proteins/metabolism , PQQ Cofactor/biosynthesis , Anaerobiosis , Apraxia, Ideomotor , Bacterial Proteins/genetics , Catalytic Domain , Cloning, Molecular , Methylobacterium/enzymology , Models, Molecular , Oxygen/metabolism , Protein Conformation
10.
Cell ; 142(6): 889-901, 2010 Sep 17.
Article in English | MEDLINE | ID: mdl-20850011

ABSTRACT

In response to many apoptotic stimuli, oligomerization of Bax is essential for mitochondrial outer membrane permeabilization and the ensuing release of cytochrome c. These events are accompanied by mitochondrial fission that appears to require Drp1, a large GTPase of the dynamin superfamily. Loss of Drp1 leads to decreased cytochrome c release by a mechanism that is poorly understood. Here we show that Drp1 stimulates tBid-induced Bax oligomerization and cytochrome c release by promoting tethering and hemifusion of membranes in vitro. This function of Drp1 is independent of its GTPase activity and relies on arginine 247 and the presence of cardiolipin in membranes. In cells, overexpression of Drp1 R247A/E delays Bax oligomerization and cell death. Our findings uncover a function of Drp1 and provide insight into the mechanism of Bax oligomerization.


Subject(s)
GTP Phosphohydrolases/metabolism , Microtubule-Associated Proteins/metabolism , Mitochondrial Proteins/metabolism , bcl-2-Associated X Protein/metabolism , Amino Acid Sequence , Animals , Apoptosis , BH3 Interacting Domain Death Agonist Protein/metabolism , Cardiolipins/metabolism , Cell-Free System , Dynamins , HeLa Cells , Humans , Liposomes/metabolism , Mitochondrial Membranes/metabolism , Models, Molecular , Molecular Sequence Data , Rats
11.
Biochemistry ; 49(38): 8307-15, 2010 Sep 28.
Article in English | MEDLINE | ID: mdl-20795673

ABSTRACT

Two apical caspases, caspase-8 and -10, are involved in the extrinsic death receptor pathway in humans, but it is mainly caspase-8 in its apoptotic and nonapoptotic functions that has been an intense research focus. In this study we concentrate on caspase-10, its mechanism of activation, and the role of the intersubunit cleavage. Our data obtained through in vitro dimerization assays strongly suggest that caspase-10 follows the proximity-induced dimerization model for apical caspases. Furthermore, we compare the specificity and activity of the wild-type protease with a mutant incapable of autoprocessing by using positional scanning substrate analysis and cleavage of natural protein substrates. These experiments reveal a striking difference between the wild type and the mutant, leading us to hypothesize that the single chain enzyme has restricted activity on most proteins but high activity on the proapoptotic protein Bid, potentially supporting a prodeath role for both cleaved and uncleaved caspase-10.


Subject(s)
Caspase 10/biosynthesis , BH3 Interacting Domain Death Agonist Protein/metabolism , Dimerization , Endopeptidases/metabolism , Enzyme Activation , Humans , Substrate Specificity
12.
Proteins ; 78(11): 2554-62, 2010 Aug 15.
Article in English | MEDLINE | ID: mdl-20602352

ABSTRACT

Pyrroloquinoline quinone [4,5-dihydro-4,5-dioxo-1H-pyrrolo[2,3-f]quinoline-2,7,9-tricarboxylic acid (PQQ)] is a bacterial cofactor in numerous alcohol dehydrogenases including methanol dehydrogenase and glucose dehydrogenase. Its biosynthesis in Klebsiella pneumoniae is facilitated by six genes, pqqABCDEF and proceeds by an unknown pathway. PqqC is one of two metal free oxidases of known structure and catalyzes the last step of PQQ biogenesis which involves a ring closure and an eight-electron oxidation of the substrate [3a-(2-amino-2-carboxyethyl)-4,5-dioxo-4,5,6,7,8,9-hexahydroquinoline-7,9-dicarboxylic acid (AHQQ)]. PqqC has 14 conserved active site residues, which have previously been shown to be in close contact with bound PQQ. Herein, we describe the structures of three PqqC active site variants, H154S, Y175F, and the double mutant R179S/Y175S. The H154S crystal structure shows that, even with PQQ bound, the enzyme is still in the "open" conformation with helices alpha5b and alpha6 unfolded and the active site solvent accessible. The Y175F PQQ complex crystal structure reveals the closed conformation indicating that Y175 is not required for the conformational change. The R179S/Y175S AHQQ complex crystal structure is the most mechanistically informative, indicating an open conformation with a reaction intermediate trapped in the active site. The intermediate seen in R179S/Y175S is tricyclic but nonplanar, implying that it has not undergone oxidation. These studies implicate a stepwise process in which substrate binding leads to the generation of the closed protein conformation, with the latter playing a critical role in O(2) binding and catalysis.


Subject(s)
Bacterial Proteins/chemistry , Mutation , Oxygen/chemistry , PQQ Cofactor/chemistry , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalytic Domain , Conserved Sequence , Crystallography, X-Ray , Klebsiella pneumoniae/enzymology , Klebsiella pneumoniae/genetics , Oxygen/metabolism , PQQ Cofactor/metabolism
13.
J Biol Chem ; 285(34): 26223-32, 2010 Aug 20.
Article in English | MEDLINE | ID: mdl-20538593

ABSTRACT

Proteins of the nucleotide-binding domain, leucine-rich repeat (NLR)-containing family recently gained attention as important components of the innate immune system. Although over 20 of these proteins are present in humans, only a few members including the cytosolic pattern recognition receptors NOD1, NOD2, and NLRP3 have been analyzed extensively. These NLRs were shown to be pivotal for mounting innate immune response toward microbial invasion. Here we report on the characterization of human NLRC5 and provide evidence that this NLR has a function in innate immune responses. We found that NLRC5 is a cytosolic protein expressed predominantly in hematopoetic cells. NLRC5 mRNA and protein expression was inducible by the double-stranded RNA analog poly(I.C) and Sendai virus. Overexpression of NLRC5 failed to trigger inflammatory responses such as the NF-kappaB or interferon pathways in HEK293T cells. However, knockdown of endogenous NLRC5 reduced Sendai virus- and poly(I.C)-mediated type I interferon pathway-dependent responses in THP-1 cells and human primary dermal fibroblasts. Taken together, this defines a function for NLRC5 in anti-viral innate immune responses.


Subject(s)
Immunity, Innate , Intracellular Signaling Peptides and Proteins/immunology , Viruses/immunology , Cells, Cultured , Hematopoietic Stem Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Poly I-C/immunology , RNA, Messenger/analysis , Sendai virus/immunology , Transcriptional Activation/immunology
14.
J Biol Chem ; 285(35): 27402-27410, 2010 Aug 27.
Article in English | MEDLINE | ID: mdl-20547486

ABSTRACT

The innate immune system provides an initial line of defense against infection. Nucleotide-binding domain- and leucine-rich repeat-containing protein (NLR or (NOD-like)) receptors play a critical role in the innate immune response by surveying the cytoplasm for traces of intracellular invaders and endogenous stress signals. NLRs themselves are multi-domain proteins. Their N-terminal effector domains (typically a pyrin or caspase activation and recruitment domain) are responsible for driving downstream signaling and initiating the formation of inflammasomes, multi-component complexes necessary for cytokine activation. However, the currently available structures of NLR effector domains have not yet revealed the mechanism of their differential modes of interaction. Here, we report the structure and dynamics of the N-terminal pyrin domain of NLRP7 (NLRP7 PYD) obtained by NMR spectroscopy. The NLRP7 PYD adopts a six-alpha-helix bundle death domain fold. A comparison of conformational and dynamics features of the NLRP7 PYD with other PYDs showed distinct differences for helix alpha3 and loop alpha2-alpha3, which, in NLRP7, is stabilized by a strong hydrophobic cluster. Moreover, the NLRP7 and NLRP1 PYDs have different electrostatic surfaces. This is significant, because death domain signaling is driven by electrostatic contacts and stabilized by hydrophobic interactions. Thus, these results provide new insights into NLRP signaling and provide a first molecular understanding of inflammasome formation.


Subject(s)
Adaptor Proteins, Signal Transducing/chemistry , Cytoskeletal Proteins , Protein Folding , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Crystallography, X-Ray , Humans , Hydrophobic and Hydrophilic Interactions , Protein Structure, Secondary , Protein Structure, Tertiary , Pyrin , Static Electricity , Structure-Activity Relationship
15.
J Alzheimers Dis ; 20 Suppl 2: S513-26, 2010.
Article in English | MEDLINE | ID: mdl-20463395

ABSTRACT

Mitochondrial dysfunction and synaptic loss are among the earliest events linked to Alzheimer's disease (AD) and might play a causative role in disease onset and progression. The underlying mechanisms of mitochondrial and synaptic dysfunction in AD remain unclear. We previously reported that nitric oxide (NO) triggers persistent mitochondrial fission and causes neuronal cell death. A recent article claimed that S-nitrosylation of dynamin related protein 1 (DRP1) at cysteine 644 causes protein dimerization and increased GTPase activity and is the mechanism responsible for NO-induced mitochondrial fission and neuronal injury in AD, but not in Parkinson's disease (PD). However, this report remains controversial. To resolve the controversy, we investigated the effects of S-nitrosylation on DRP1 structure and function. Contrary to the previous report, S-nitrosylation of DRP1 does not increase GTPase activity or cause dimerization. In fact, DRP1 does not exist as a dimer under native conditions, but rather as a tetramer capable of self-assembly into higher order spiral- and ring-like oligomeric structures after nucleotide binding. S-nitrosylation, as confirmed by the biotin-switch assay, has no impact on DRP1 oligomerization. Importantly, we found no significant difference in S-nitrosylated DRP1 (SNO-DRP1) levels in brains of age-matched normal, AD, or PD patients. We also found that S-nitrosylation is not specific to DRP1 because S-nitrosylated optic atrophy 1 (SNO-OPA1) is present at comparable levels in all human brain samples. Finally, we show that NO triggers DRP1 phosphorylation at serine 616, which results in its activation and recruitment to mitochondria. Our data indicate the mechanism underlying nitrosative stress-induced mitochondrial fragmentation in AD is not DRP1 S-nitrosylation.


Subject(s)
Alzheimer Disease/enzymology , Brain/enzymology , GTP Phosphohydrolases/metabolism , Microtubule-Associated Proteins/metabolism , Mitochondrial Diseases/enzymology , Mitochondrial Proteins/metabolism , Aging/pathology , Alzheimer Disease/etiology , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Biotin/metabolism , Brain/ultrastructure , Cell Line, Transformed , Cysteine/genetics , Cysteine/metabolism , Dithiothreitol/pharmacology , Dynamins , GTP Phosphohydrolases/genetics , Humans , Microscopy, Electron, Transmission/methods , Microtubule-Associated Proteins/genetics , Mitochondrial Diseases/complications , Mitochondrial Proteins/drug effects , Mitochondrial Proteins/genetics , Postmortem Changes , Protein Multimerization/drug effects , Protein Multimerization/physiology
16.
J Immunol ; 184(2): 725-35, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-19995902

ABSTRACT

Previously, defined naturally occurring isoforms of allergenic proteins were classified as hypoallergens and therefore suggested as an agent for immunotherapy in the future. In this paper, we report for the first time the molecular background of hypoallergenicity by comparing the immunological behavior of hyperallergenic Betula verrucosa major Ag 1a (Bet v 1a) and hypoallergenic Bet v 1d, two isoforms of the major birch pollen allergen Betula verrucosa 1. Despite their cross-reactivity, Bet v 1a and Bet v 1d differ in their capacity to induce protective Ab responses in BALB/c mice. Both isoforms induced similar specific IgE levels, but only Bet v 1d expressed relevant titers of serum IgGs and IgAs. Interestingly, hypoallergenic Bet v 1d activated dendritic cells more efficiently, followed by the production of increased amounts of Th1- as well as Th2-type cytokines. Surprisingly, compared with Bet v 1a, Bet v 1d-immunized mice showed a decreased proliferation of regulatory T cells. Crystallographic studies and dynamic light scattering revealed that Bet v 1d demonstrated a high tendency to form disulfide-linked aggregates due to a serine to cysteine exchange at residue 113. We conclude that aggregation of Bet v 1d triggers the establishment of a protective Ab titer and supports a rationale for Bet v 1d being a promising candidate for specific immunotherapy of birch pollen allergy.


Subject(s)
Allergens/chemistry , Betula/immunology , Cross Reactions/immunology , Hypersensitivity/immunology , Pollen/immunology , Protein Multimerization/immunology , Allergens/immunology , Animals , Betulaceae , Immunity, Humoral , Immunoglobulin Isotypes/analysis , Isoantibodies/immunology , Mice , Mice, Inbred BALB C
17.
Biomol NMR Assign ; 3(2): 207-9, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19888692

ABSTRACT

The resonance assignments of the human NLRP7 PYD domain have been determined based on triple-resonance experiments using uniformly [(13)C,(15)N]-labeled protein. This assignment is the first step towards the 3D structure determination of the NLRP7 PYD domain.


Subject(s)
Adaptor Proteins, Signal Transducing/chemistry , Cytoskeletal Proteins , Humans , Nuclear Magnetic Resonance, Biomolecular , Protein Structure, Tertiary , Pyrin
18.
PLoS One ; 4(4): e4931, 2009.
Article in English | MEDLINE | ID: mdl-19337385

ABSTRACT

Members of the Nod-like receptor (NLR) family recognize intracellular pathogens and recruit a variety of effector molecules, including pro-caspases and kinases, which in turn are implicated in cytokine processing and NF-kappaB activation.In order to elucidate the intricate network of NLR signaling, which is still fragmentary in molecular terms, we applied comprehensive yeast two-hybrid analysis for unbiased evaluation of physical interactions between NLRs and their adaptors (ASC, CARD8) as well as kinase RIPK2 and inflammatory caspases (C1, C2, C4, C5) under identical conditions. Our results confirmed the interaction of NOD1 and NOD2 with RIPK2, and between NLRP3 and ASC, but most importantly, our studies revealed hitherto unrecognized interactions of NOD2 with members of the NLRP subfamily. We found that NOD2 specifically and directly interacts with NLRP1, NLRP3 and NLRP12. Furthermore, we observed homodimerization of the RIPK2 CARD domains and identified residues in NOD2 critical for interaction with RIPK2.In conclusion, our work provides further evidence for the complex network of protein-protein interactions underlying NLR function.


Subject(s)
Nod Signaling Adaptor Proteins/metabolism , Binding Sites , Cell Line , Humans , Protein Binding , Two-Hybrid System Techniques
19.
Mol Immunol ; 46(10): 2090-7, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19269031

ABSTRACT

Ragweed is one of the most important pollen allergens in North America and parts of Europe. Although the major allergen Amb a 1 was isolated and cloned in 1991, recombinant Amb a 1 was not explored further to improve diagnosis and specific immunotherapy of ragweed-pollen allergy. In the present study the immunological properties of natural Amb a 1 and its proteolytical cleavage products was investigated in detail and compared with recombinant produced Amb a 1 variants. Characterization of natural Amb a 1 and the identification of its proteolytic fragments, designated Amb a 1 alpha and Amb a 1 beta, was performed by N-terminal sequencing and mass spectroscopy. Amb a 1 and fragments were further produced in Escherichia coli, purified, and immunologically characterized. Amb a 1-specific T-cell cultures were used to compare the T-cell response to the different Amb a 1 variants. Divergent immunological properties of Amb a 1 alpha (aa 181-396) and Amb a 1 beta (aa 26-180) were revealed. Amb a 1 beta contained important IgE epitopes, whereas Amb a 1 alpha showed low IgE binding. When compared to natural Amb a 1, all recombinant variants possessed >100-fold reduced IgE-mediated mediator release activity. At the T-cell level recombinant and natural Amb a 1 stimulated comparable T-cell responses and the T-cell reactivity was largely directed to the C-terminal part. The results demonstrated that recombinant Amb a 1 alpha behaves as hypoallergen with reduced IgE binding but preservation of the major T-cell reactivity. In addition, recombinant Amb a 1 alpha can be easily purified to homogeneity in large quantity and therefore represents an ideal candidate for specific immunotherapy.


Subject(s)
Allergens/immunology , Ambrosia/immunology , Immunoglobulin E/immunology , Plant Proteins/immunology , Pollen/immunology , Protein Subunits/immunology , T-Lymphocytes/immunology , Allergens/chemistry , Ambrosia/chemistry , Amino Acid Sequence , Animals , Antigens, Plant , Humans , Mass Spectrometry , Models, Molecular , Molecular Sequence Data , Plant Proteins/chemistry , Protein Processing, Post-Translational , Protein Structure, Secondary , Protein Subunits/chemistry , Rats , Sequence Analysis, Protein , Structural Homology, Protein
20.
Nature ; 457(7232): 1019-22, 2009 Feb 19.
Article in English | MEDLINE | ID: mdl-19118384

ABSTRACT

The death inducing signalling complex (DISC) formed by Fas receptor, FADD (Fas-associated death domain protein) and caspase 8 is a pivotal trigger of apoptosis. The Fas-FADD DISC represents a receptor platform, which once assembled initiates the induction of programmed cell death. A highly oligomeric network of homotypic protein interactions comprised of the death domains of Fas and FADD is at the centre of DISC formation. Thus, characterizing the mechanistic basis for the Fas-FADD interaction is crucial for understanding DISC signalling but has remained unclear largely because of a lack of structural data. We have successfully formed and isolated the human Fas-FADD death domain complex and report the 2.7 A crystal structure. The complex shows a tetrameric arrangement of four FADD death domains bound to four Fas death domains. We show that an opening of the Fas death domain exposes the FADD binding site and simultaneously generates a Fas-Fas bridge. The result is a regulatory Fas-FADD complex bridge governed by weak protein-protein interactions revealing a model where the complex itself functions as a mechanistic switch. This switch prevents accidental DISC assembly, yet allows for highly processive DISC formation and clustering upon a sufficient stimulus. In addition to depicting a previously unknown mode of death domain interactions, these results further uncover a mechanism for receptor signalling solely by oligomerization and clustering events.


Subject(s)
Fas-Associated Death Domain Protein/chemistry , Fas-Associated Death Domain Protein/metabolism , Receptor Aggregation , Signal Transduction , fas Receptor/chemistry , fas Receptor/metabolism , Crystallography, X-Ray , Death Domain Receptor Signaling Adaptor Proteins/chemistry , Death Domain Receptor Signaling Adaptor Proteins/metabolism , Humans , Models, Molecular , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...