Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
PLoS One ; 19(5): e0294839, 2024.
Article in English | MEDLINE | ID: mdl-38768148

ABSTRACT

Rare species are often considered inferior competitors due to occupancy of small ranges, specific habitats, and small local populations. However, the phylogenetic relatedness and rarity level (level 1-7 and common) of interacting species in plant-plant interactions are not often considered when predicting the response of rare plants in a biotic context. We used a common garden of 25 species of Tasmanian Eucalyptus, to differentiate non-additive patterns in the biomass of rare versus common species when grown in mixtures varying in phylogenetic relatedness and rarity. We demonstrate that rare species maintain progressively positive non-additive responses in biomass when interacting with phylogenetically intermediate, less rare and common species. This trend is not reflected in common species that out-performed in monocultures compared to mixtures. These results offer predictability as to how rare species' productivity will respond within various plant-plant interactions. However, species-specific interactions, such as those involving E. globulus, yielded a 97% increase in biomass compared to other species-specific interaction outcomes. These results are important because they suggest that plant rarity may also be shaped by biotic interactions, in addition to the known environmental and population factors normally used to describe rarity. Rare species may utilize potentially facilitative interactions with phylogenetically intermediate and common species to escape the effects of limiting similarity. Biotically mediated increases in rare plant biomass may have subsequent effects on the competitive ability and geographic occurrence of rare species, allowing rare species to persist at low abundance across plant communities. Through the consideration of species rarity and evolutionary history, we can more accurately predict plant-plant interaction dynamics to preserve unique ecosystem functions and fundamentally challenge what it means to be "rare".


Subject(s)
Biomass , Eucalyptus , Phylogeny , Eucalyptus/growth & development , Eucalyptus/genetics , Ecosystem , Biological Evolution , Species Specificity , Plants/classification
2.
Nat Microbiol ; 8(12): 2406-2419, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37973868

ABSTRACT

Understanding drivers of terrestrial fungal communities over large scales is an important challenge for predicting the fate of ecosystems under climate change and providing critical ecological context for bioengineering plant-microbe interactions in model systems. We conducted an extensive molecular and microscopy field study across the contiguous United States measuring natural variation in the Populus fungal microbiome among tree species, plant niche compartments and key symbionts. Our results show clear biodiversity hotspots and regional endemism of Populus-associated fungal communities explained by a combination of climate, soil and geographic factors. Modelling climate change impacts showed a deterioration of Populus mycorrhizal associations and an increase in potentially pathogenic foliar endophyte diversity and prevalence. Geographic differences among these symbiont groups in their sensitivity to environmental change are likely to influence broader forest health and ecosystem function. This dataset provides an above- and belowground atlas of Populus fungal biodiversity at a continental scale.


Subject(s)
Mycorrhizae , Populus , Trees/microbiology , Ecosystem , Populus/microbiology , Biodiversity
3.
Commun Biol ; 5(1): 1213, 2022 11 10.
Article in English | MEDLINE | ID: mdl-36357488

ABSTRACT

Climate change is having profound effects on species distributions and is likely altering the distribution of genetic variation across landscapes. Maintaining population genetic diversity is essential for the survival of species facing rapid environmental change, and variation loss will further ecological and evolutionary change. We used trait values of spring foliar leaf-out phenology of 400 genotypes from three geographically isolated populations of Populus angustifolia grown under common conditions, in concert with stacked species distribution modeling, to ask: (a) How will climate change alter phenological variation across the P. angustifolia species-range, and within populations; and (b) will the distribution of phenological variation among and within populations converge (become more similar) in future climatic conditions? Models predicted a net loss of phenological variation in future climate scenarios on 20-25% of the landscape across the species' range, with the trailing edge population losing variation on as much as 47% of the landscape. Our models also predicted that population's phenological trait distributions will become more similar over time. This stacked distribution model approach allows for the identification of areas expected to experience the greatest loss of genetically based functional trait variation and areas that may be priorities to conserve as future genetic climate refugia.


Subject(s)
Climate Change , Populus , Plant Leaves/genetics , Seasons , Populus/genetics , Phenotype
4.
PLoS One ; 17(9): e0274892, 2022.
Article in English | MEDLINE | ID: mdl-36121872

ABSTRACT

Identifying and predicting how species ranges will shift in response to climate change is paramount for conservation and restoration. Ecological niche models are the most common method used to estimate potential distributions of species; however, they traditionally omit knowledge of intraspecific variation that can allow populations to respond uniquely to change. Here, we aim to test how population X environment relationships influence predicted suitable geographic distributions by comparing aggregated population-level models with species-level model predictions of suitable habitat within population ranges and across the species' range. We also test the effect of two variable selection methods on these predictions-both addressing the possibility of local adaptation: Models were built with (a) a common set, and number, of predictors and, (b) a unique combination and number of predictors specific to each group's training extent. Our study addresses the overarching hypothesis that populations have unique environmental niches, and specifically that (1) species-level models predict more suitable habitat within the ranges of genetic populations than individual models built from those groups, particularly when compared models are built with the same set of environmental predictors; and (2) aggregated genetic population models predict more suitable habitat across the species' range than the species-level model, an = d this difference will increase when models are trained with individualized predictors. We found the species models predicted more habitat within population ranges for two of three genetic groups regardless of variable selection, and that aggregated population models predicted more habitat than species' models, but that individualized predictors increased this difference. Our study emphasizes the extent to which changes to model predictions depend on the inclusion of genetic information and on the type and selection of predictors. Results from these modeling decisions can have broad implications for predicting population-level ecological and evolutionary responses to climate change.


Subject(s)
Ecosystem , Trees , Acclimatization , Adaptation, Physiological , Climate Change
5.
Trends Ecol Evol ; 37(11): 1006-1019, 2022 11.
Article in English | MEDLINE | ID: mdl-35995606

ABSTRACT

Research on the evolutionary ecology of urban areas reveals how human-induced evolutionary changes affect biodiversity and essential ecosystem services. In a rapidly urbanizing world imposing many selective pressures, a time-sensitive goal is to identify the emergent issues and research priorities that affect the ecology and evolution of species within cities. Here, we report the results of a horizon scan of research questions in urban evolutionary ecology submitted by 100 interdisciplinary scholars. We identified 30 top questions organized into six themes that highlight priorities for future research. These research questions will require methodological advances and interdisciplinary collaborations, with continued revision as the field of urban evolutionary ecology expands with the rapid growth of cities.


Subject(s)
Ecosystem , Urbanization , Biodiversity , Cities , Ecology/methods , Humans
6.
New Phytol ; 232(2): 762-775, 2021 10.
Article in English | MEDLINE | ID: mdl-34227117

ABSTRACT

Identifying the potential for natural soil microbial communities to predictably affect complex plant traits is an important frontier in climate change research. Plant phenology varies with environmental and genetic factors, but few studies have examined whether the soil microbiome interacts with plant population differentiation to affect phenology and ecosystem function. We compared soil microbial variation in a widespread tree species (Populus angustifolia) with different soil inoculum treatments in a common garden environment to test how the soil microbiome affects spring foliar phenology and subsequent biomass growth. We hypothesized and show that soil bacterial and fungal communities vary with tree conditioning from different populations and elevations, that this soil community variation influences patterns of foliar phenology and plant growth across populations and elevation gradients, and that transferring lower elevation plant genotypes to higher elevation soil communities delayed foliar phenology, thereby shortening the growing season and reducing annual biomass production. Our findings show the importance of plant-soil interactions that help shape the timing of tree foliar phenology and productivity. These geographic patterns in plant population × microbiome interactions also broaden our understanding of how soil communities impact plant phenotypic variation across key climate change gradients, with consequences for ecosystem functioning.


Subject(s)
Microbiota , Populus , Climate Change , Ecosystem , Seasons , Soil
7.
Commun Biol ; 4(1): 748, 2021 06 16.
Article in English | MEDLINE | ID: mdl-34135464

ABSTRACT

Soil microbiomes are rapidly becoming known as an important driver of plant phenotypic variation and may mediate plant responses to environmental factors. However, integrating spatial scales relevant to climate change with plant intraspecific genetic variation and soil microbial ecology is difficult, making studies of broad inference rare. Here we hypothesize and show: 1) the degree to which tree genotypes condition their soil microbiomes varies by population across the geographic distribution of a widespread riparian tree, Populus angustifolia; 2) geographic dissimilarity in soil microbiomes among populations is influenced by both abiotic and biotic environmental variation; and 3) soil microbiomes that vary in response to abiotic and biotic factors can change plant foliar phenology. We show soil microbiomes respond to intraspecific variation at the tree genotype and population level, and geographic variation in soil characteristics and climate. Using a fully reciprocal plant population by soil location feedback experiment, we identified a climate-based soil microbiome effect that advanced and delayed bud break phenology by approximately 10 days. These results demonstrate a landscape-level feedback between tree populations and associated soil microbial communities and suggest soil microbes may play important roles in mediating and buffering bud break phenology with climate warming, with whole ecosystem implications.


Subject(s)
Climate Change , Ecosystem , Populus/microbiology , Soil Microbiology , Soil/chemistry , Genetic Variation , Microbiota , Rhizosphere , Trees/microbiology , United States
8.
Ecol Evol ; 10(9): 3856-3867, 2020 May.
Article in English | MEDLINE | ID: mdl-32489616

ABSTRACT

Global change is widely altering environmental conditions which makes accurately predicting species range limits across natural landscapes critical for conservation and management decisions. If climate pressures along elevation gradients influence the distribution of phenotypic and genetic variation of plant functional traits, then such trait variation may be informative of the selective mechanisms and adaptations that help define climatic niche limits. Using extensive field surveys along 16 elevation transects and a large common garden experiment, we tested whether functional trait variation could predict the climatic niche of a widespread tree species (Populus angustifolia) with a double quantile regression approach. We show that intraspecific variation in plant size, growth, and leaf morphology corresponds with the species' total climate range and certain climatic limits related to temperature and moisture extremes. Moreover, we find evidence of genetic clines and phenotypic plasticity at environmental boundaries, which we use to create geographic predictions of trait variation and maximum values due to climatic constraints across the western US. Overall, our findings show the utility of double quantile regressions for connecting species distributions and climate gradients through trait-based mechanisms. We highlight how new approaches like ours that incorporate genetic variation in functional traits and their response to climate gradients will lead to a better understanding of plant distributions as well as identifying populations anticipated to be maladapted to future environments.

9.
Plant Environ Interact ; 1(3): 166-180, 2020 Dec.
Article in English | MEDLINE | ID: mdl-37284209

ABSTRACT

The objective of this study was to understand how genetic variation in a riparian species, Populus angustifolia, affects mass and energy exchange between the land and atmosphere across ~1,700 km of latitude of the western United States. To examine the potential for large-scale land-atmosphere feedbacks in hydrologic processes driven by geographic differences in plant population traits, we use a physical hydrology model, paired field, and greenhouse observations of plant traits, and stable isotope compositions of soil, stem, and leaf water of P. angustifolia populations. Populations show patterns of local adaptation in traits related to landscape hydrologic functioning-a 47% difference in stomatal density in greenhouse conditions and a 74% difference in stomatal ratio in the field. Trait and stable isotope differences reveal that populations use water differently which is related to historical landscape hydrologic functioning (evapotranspiration and streamflow). Overall, results suggest that populations from landscapes with different hydrologic histories will differ in their ability to maintain favorable water balance with changing atmospheric demands for water, with ecosystem consequences.

10.
Glob Chang Biol ; 25(4): 1514-1528, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30659721

ABSTRACT

We examined the hypothesis that climate-driven evolution of plant traits will influence associated soil microbiomes and ecosystem function across the landscape. Using a foundation tree species, Populus angustifolia, observational and common garden approaches, and a base population genetic collection that spans 17 river systems in the western United States, from AZ to MT, we show that (a) as mean annual temperature (MAT) increases, genetic and phenotypic variation for bud break phenology decline; (b) soil microbiomes, soil nitrogen (N), and soil carbon (C) vary in response to MAT and conditioning by trees; and (c) with losses of genetic variation due to warming, population-level regulation of community and ecosystem functions strengthen. These results demonstrate a relationship between the potential evolutionary response of populations and subsequent shifts in ecosystem function along a large temperature gradient.

11.
Nat Ecol Evol ; 2(1): 57-64, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29203921

ABSTRACT

Human activity is causing wild populations to experience rapid trait change and local extirpation. The resulting effects on intraspecific variation could have substantial consequences for ecological processes and ecosystem services. Although researchers have long acknowledged that variation among species influences the surrounding environment, only recently has evidence accumulated for the ecological importance of variation within species. We conducted a meta-analysis comparing the ecological effects of variation within a species (intraspecific effects) with the effects of replacement or removal of that species (species effects). We evaluated direct and indirect ecological responses, including changes in abundance (or biomass), rates of ecological processes and changes in community composition. Our results show that intraspecific effects are often comparable to, and sometimes stronger than, species effects. Species effects tend to be larger for direct ecological responses (for example, through consumption), whereas intraspecific effects and species effects tend to be similar for indirect responses (for example, through trophic cascades). Intraspecific effects are especially strong when indirect interactions alter community composition. Our results summarize data from the first generation of studies examining the relative ecological effects of intraspecific variation. Our conclusions can help inform the design of future experiments and the formulation of strategies to quantify and conserve biodiversity.


Subject(s)
Biodiversity , Biomass , Genetic Variation , Ecosystem , Models, Biological , Species Specificity
12.
Nat Ecol Evol ; 1(6): 150, 2017 Apr 28.
Article in English | MEDLINE | ID: mdl-28812635

ABSTRACT

Plant-soil feedbacks (PSF) are important interactions that may influence range dynamics in a changing world. What remains largely unknown is the generality of plant-soil biotic interactions across populations and the potential role of specific soil biota, both of which are key for understanding how PSF might change future communities and ecosystems. We combined landscape-level field observations and experimental soil treatments to test whether a dominant tree alters soil environments to impact its own performance and range shifts towards higher elevations. We show: (1) soil conditioning by trees varies with elevation, (2) soil biota relate to PSF, (3) under simulated conditions, biotic PSF constrain range shifts at lower elevations but allow for expansions at higher elevations, and (4) differences in soil conditioning predict feedback outcomes in specific range-shift scenarios. These results suggest that variable plant-soil biotic interactions may influence the migration and fragmentation of tree species, and that models incorporating soil parameters will more accurately predict future species distributions.

13.
AoB Plants ; 9(4): plx027, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28721188

ABSTRACT

Elevation gradients are frequently used as space-for-time substitutions to infer species' trait responses to climate change. However, studies rarely investigate whether trait responses to elevation are widespread or population-specific within a species, and the relative genetic and plastic contributions to such trait responses may not be well understood. Here, we examine plant trait variation in the dominant woody shrub, Rhododendron maximum, along elevation gradients in three populations in the South Central Appalachian Mountains, USA, in both field and common garden environments. We ask the following: (i) do plant traits vary along elevation? (ii) do trait responses to elevation differ across populations, and if so, why? and (iii) does genetic differentiation or phenotypic plasticity drive trait variation within and among populations? We found that internode length, shoot length, leaf dry mass, and leaf area varied along elevation, but that these responses were generally unique to one population, suggesting that trait responses to environmental gradients are population-specific. A common garden experiment identified no genetic basis to variation along elevation or among populations in any trait, suggesting that plasticity drives local and regional trait variation and may play a key role in the persistence of plant species such as R. maximum with contemporary climate change. Overall, our findings highlight the importance of examining multiple locations in future elevation studies and indicate that, for a given plant species, the magnitude of trait responses to global climate change may vary by location.

14.
Ecology ; 98(8): 2120-2132, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28500764

ABSTRACT

Increasing rates of anthropogenic nitrogen (N) enrichment to soils often lead to the dominance of nitrophilic plant species and reduce plant diversity in natural ecosystems. Yet, we lack a framework to predict which species will be winners or losers in soil N enrichment scenarios, a framework that current literature suggests should integrate plant phylogeny, functional tradeoffs, and nutrient co-limitation. Using a controlled fertilization experiment, we quantified biomass responses to N enrichment for 23 forest tree species within the genus Eucalyptus that are native to Tasmania, Australia. Based on previous work with these species' responses to global change factors and theory on the evolution of plant resource-use strategies, we hypothesized that (1) growth responses to N enrichment are phylogenetically structured, (2) species with more resource-acquisitive functional traits have greater growth responses to N enrichment, and (3) phosphorus (P) limits growth responses to N enrichment differentially across species, wherein P enrichment increases growth responses to N enrichment more in some species than others. We built a hierarchical Bayesian model estimating effects of functional traits (specific leaf area, specific stem density, and specific root length) and P fertilization on species' biomass responses to N, which we then compared between lineages to determine whether phylogeny explains variation in responses to N. In concordance with literature on N limitation, a majority of species responded strongly and positively to N enrichment. Mean responses ranged three-fold, from 6.21 (E. pulchella) to 16.87 (E. delegatensis) percent increases in biomass per g N·m-2 ·yr-1 added. We identified a strong difference in responses to N between two phylogenetic lineages in the Eucalyptus subgenus Symphyomyrtus, suggesting that shared ancestry explains variation in N limitation. However, our model indicated that after controlling for phylogenetic non-independence, eucalypt responses to N were not associated with functional traits (although post-hoc analyses show a phylogenetic pattern in specific root length similar to that of responses to N), nor were responses differentially limited by P. Overall, our model results suggest that phylogeny is a powerful predictor of winners and losers in anthropogenic N enrichment scenarios in Tasmanian eucalypts, which may have implications for other species.


Subject(s)
Biomass , Phylogeny , Plants/classification , Australia , Bayes Theorem , Ecology , Nitrogen , Plant Leaves , Soil , Tasmania
15.
J Chem Ecol ; 42(10): 1086-1097, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27577951

ABSTRACT

Plants are dependent on their root systems for survival, and thus are defended from belowground enemies by a range of strategies, including plant secondary metabolites (PSMs). These compounds vary among species, and an understanding of this variation may provide generality in predicting the susceptibility of forest trees to belowground enemies and the quality of their organic matter input to soil. Here, we investigated phylogenetic patterns in the root chemistry of species within the genus Eucalyptus. Given the known diversity of PSMs in eucalypt foliage, we hypothesized that (i) the range and concentrations of PSMs and carbohydrates in roots vary among Eucalyptus species, and (ii) that phylogenetic relationships explain a significant component of this variation. To test for interspecific variation in root chemistry and the influence of tree phylogeny, we grew 24 Eucalyptus species representing two subgenera (Eucalyptus and Symphyomyrtus) in a common garden for two years. Fine root samples were collected from each species and analyzed for total phenolics, condensed tannins, carbohydrates, terpenes, and formylated phloroglucinol compounds. Compounds displaying significant interspecific variation were mapped onto a molecular phylogeny and tested for phylogenetic signal. Although all targeted groups of compounds were present, we found that phenolics dominated root defenses and that all phenolic traits displayed significant interspecific variation. Further, these compounds displayed a significant phylogenetic signal. Overall, our results suggest that within these representatives of genus Eucalyptus, more closely related species have more similar root chemistry, which may influence their susceptibility to belowground enemies and soil organic matter accrual.


Subject(s)
Eucalyptus/chemistry , Eucalyptus/genetics , Phylogeny , Plant Roots/chemistry , Plant Roots/genetics , Carbohydrates/analysis , Phenols/analysis , Phloroglucinol/analysis , Tannins/analysis , Terpenes/analysis
16.
PLoS One ; 9(12): e114596, 2014.
Article in English | MEDLINE | ID: mdl-25479056

ABSTRACT

A major frontier in global change research is predicting how multiple agents of global change will alter plant productivity, a critical component of the carbon cycle. Recent research has shown that plant responses to climate change are phylogenetically conserved such that species within some lineages are more productive than those within other lineages in changing environments. However, it remains unclear how phylogenetic patterns in plant responses to changing abiotic conditions may be altered by another agent of global change, the introduction of non-native species. Using a system of 28 native Tasmanian Eucalyptus species belonging to two subgenera, Symphyomyrtus and Eucalyptus, we hypothesized that productivity responses to abiotic agents of global change (elevated CO2 and increased soil N) are unique to lineages, but that novel interactions with a non-native species mediate these responses. We tested this hypothesis by examining productivity of 1) native species monocultures and 2) mixtures of native species with an introduced hardwood plantation species, Eucalyptus nitens, to experimentally manipulated soil N and atmospheric CO2. Consistent with past research, we found that N limits productivity overall, especially in elevated CO2 conditions. However, monocultures of species within the Symphyomyrtus subgenus showed the strongest response to N (gained 127% more total biomass) in elevated CO2 conditions, whereas those within the Eucalyptus subgenus did not respond to N. Root:shoot ratio (an indicator of resource use) was on average greater in species pairs containing Symphyomyrtus species, suggesting that functional traits important for resource uptake are phylogenetically conserved and explaining the phylogenetic pattern in plant response to changing environmental conditions. Yet, native species mixtures with E. nitens exhibited responses to CO2 and N that differed from those of monocultures, supporting our hypothesis and highlighting that both plant evolutionary history and introduced species will shape community productivity in a changing world.


Subject(s)
Carbon Dioxide/metabolism , Climate Change , Eucalyptus/physiology , Nitrogen/metabolism , Phylogeny
17.
PLoS One ; 9(10): e111190, 2014.
Article in English | MEDLINE | ID: mdl-25340402

ABSTRACT

Species ranges have been shifting since the Pleistocene, whereby fragmentation, isolation, and the subsequent reduction in gene flow have resulted in local adaptation of novel genotypes and the repeated evolution of endemic species. While there is a wide body of literature focused on understanding endemic species, very few studies empirically test whether or not the evolution of endemics results in unique function or ecological differences relative to their widespread congeners; in particular while controlling for environmental variation. Using a common garden composed of 15 Eucalyptus species within the subgenus Symphyomyrtus (9 endemic to Tasmania, 6 non-endemic), here we hypothesize and show that endemic species are functionally and ecologically different from non-endemics. Compared to non-endemics, endemic Eucalyptus species have a unique suite of functional plant traits that have extended effects on herbivores. We found that while endemics occupy many diverse habitats, they share similar functional traits potentially resulting in an endemic syndrome of traits. This study provides one of the first empirical datasets analyzing the functional differences between endemics and non-endemics in a common garden setting, and establishes a foundation for additional studies of endemic/non-endemic dynamics that will be essential for understanding global biodiversity in the midst of rapid species extinctions and range shifts as a consequence of global change.


Subject(s)
Biological Evolution , Eucalyptus/classification , Animals , Biodiversity , Ecology , Ecosystem , Eucalyptus/physiology , Forests , Genetic Variation , Herbivory , Likelihood Functions , Phylogeny , Regression Analysis , Species Specificity , Tasmania
18.
PeerJ ; 2: e288, 2014.
Article in English | MEDLINE | ID: mdl-24688865

ABSTRACT

The relationship between biodiversity and ecosystem function has received a great deal of attention in ecological research and recent results, from re-analyses, suggest that ecosystem function improves with increases in phylogenetic diversity. However, many of these results have been generalized across a range of different species and clades, and plants with different evolutionary histories could display different relationships between biodiversity and ecosystem function. To experimentally test this hypothesis, we manipulated species richness and phylogenetic diversity using 26 species from two subgenera of the genus Eucalyptus (subgenus Eucalyptus and subgenus Symphyomyrtus). We found that plant biomass (a measurement of ecosystem function) sometimes, but not always, responded to increases in species richness and phylogenetic diversity. Specifically, Symphyomyrtus plants showed a positive response while no comparable effect was observed for Eucalyptus plants, showing that responses to biodiversity can vary across different phylogenetic groups. Our results show that the impacts of evolutionary history may complicate the relationship between the diversity of plant communities and plant biomass.

19.
PLoS One ; 8(11): e79853, 2013.
Article in English | MEDLINE | ID: mdl-24265787

ABSTRACT

Pollinators serve critical roles for the functioning of terrestrial ecosystems, and have an estimated annual value of over $150 billion for global agriculture. Mounting evidence from agricultural systems reveals that pollinators are declining in many regions of the world, and with a lack of information on whether pollinator communities in natural systems are following similar trends, identifying factors which support pollinator visitation and services are important for ameliorating the effects of the current global pollinator crisis. We investigated how fire affects resource structure and how that variation influences floral pollinator communities by comparing burn versus control treatments in a southeastern USA old-field system. We hypothesized and found a positive relationship between fire and plant density of a native forb, Verbesina alternifolia, as well as a significant difference in floral visitation of V. alternifolia between burn and control treatments. V. alternifolia density was 44% greater and floral visitation was 54% greater in burned treatments relative to control sites. When the density of V. alternifolia was experimentally reduced in the burn sites to equivalent densities observed in control sites, floral visitation in burned sites declined to rates found in control sites. Our results indicate that plant density is a proximal mechanism by which an imposed fire regime can indirectly impact floral visitation, suggesting its usefulness as a tool for management of pollination services. Although concerns surround the negative impacts of management, indirect positive effects may provide an important direction to explore for managing future ecological and conservation issues. Studies examining the interaction among resource concentration, plant apparency, and how fire affects the evolutionary consequences of altered patterns of floral visitation are overdue.


Subject(s)
Ecosystem , Fires , Pollination , Agriculture , Plant Physiological Phenomena , Population Density
20.
Ecol Evol ; 3(7): 2322-33, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23919173

ABSTRACT

The role of plant intraspecific variation in plant-soil linkages is poorly understood, especially in the context of natural environmental variation, but has important implications in evolutionary ecology. We utilized three 18- to 21-year-old common gardens across an elevational gradient, planted with replicates of five Populus angustifolia genotypes each, to address the hypothesis that tree genotype (G), environment (E), and G × E interactions would affect soil carbon and nitrogen dynamics beneath individual trees. We found that soil nitrogen and carbon varied by over 50% and 62%, respectively, across all common garden environments. We found that plant leaf litter (but not root) traits vary by genotype and environment while soil nutrient pools demonstrated genotype, environment, and sometimes G × E interactions, while process rates (net N mineralization and net nitrification) demonstrated G × E interactions. Plasticity in tree growth and litter chemistry was significantly related to the variation in soil nutrient pools and processes across environments, reflecting tight plant-soil linkages. These data overall suggest that plant genetic variation can have differential affects on carbon storage and nitrogen cycling, with implications for understanding the role of genetic variation in plant-soil feedback as well as management plans for conservation and restoration of forest habitats with a changing climate.

SELECTION OF CITATIONS
SEARCH DETAIL
...