Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(7)2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37049119

ABSTRACT

Ferritic-martensitic steels, such as T91, are candidate materials for high-temperature applications, including superheaters, heat exchangers, and advanced nuclear reactors. Considering these alloys' wide applications, an atomistic understanding of the underlying mechanisms responsible for their excellent mechano-chemical properties is crucial. Here, we developed a modified embedded-atom method (MEAM) potential for the Fe-Cr-Si-Mo quaternary alloy system-i.e., four major elements of T91-using a multi-objective optimization approach to fit thermomechanical properties reported using density functional theory (DFT) calculations and experimental measurements. Elastic constants calculated using the proposed potential for binary interactions agreed well with ab initio calculations. Furthermore, the computed thermal expansion and self-diffusion coefficients employing this potential are in good agreement with other studies. This potential will offer insightful atomistic knowledge to design alloys for use in harsh environments.

2.
Sci Rep ; 9(1): 7835, 2019 May 24.
Article in English | MEDLINE | ID: mdl-31127181

ABSTRACT

Ordering and self-organization are critical in determining the dynamics of reaction-diffusion systems. Here we show a unique pattern formation mechanism, dictated by the coupling of thermodynamic instability and kinetic anisotropy. Intrinsically different from the physical origin of Turing instability and patterning, the ordered patterns we obtained are caused by the interplay of the instability from uphill diffusion, the symmetry breaking from anisotropic diffusion, and the reactions. To understand the formation of the void/gas bubble superlattices in crystals under irradiation, we establish a general theoretical framework to predict the symmetry selection of superlattice structures associated with anisotropic diffusion. Through analytical study and phase field simulations, we found that the symmetry of a superlattice is determined by the coupling of diffusion anisotropy and the reaction rate, which indicates a new type of bifurcation phenomenon. Our discovery suggests a means for designing target experiments to tailor different microstructural patterns.

3.
J Open Res Softw ; 7(1)2019.
Article in English | MEDLINE | ID: mdl-38486803

ABSTRACT

Scientific communities struggle with the challenge of effectively and efficiently sharing content and data. An online portal provides a valuable space for scientific communities to discuss challenges and collate scientific results. Examples of such portals include the Micromagnetic Modeling Group (µMAG [1]), the Interatomic Potentials Repository (IPR [2, 3]) and on a larger scale the NIH Genetic Sequence Database (GenBank [4]). In this work, we present a description of a generic web portal that leverages existing online services to provide a framework that may be adopted by other small scientific communities. The first deployment of the PFHub framework supports phase-field practitioners and code developers participating in an effort to improve quality assurance for phase-field codes.

4.
Phys Rev E ; 98(2-1): 023309, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30253559

ABSTRACT

Grand-potential-based phase-field model for multiple phases, grains, and chemical components is derived from a grand-potential functional. Due to the grand-potential formulation, the chemical energy does not contribute to the interfacial energy between phases, simplifying parametrization and decoupling interface thickness from interfacial energy, which can potentially allow increased interface thicknesses and therefore improved computational efficiency. Two-phase interfaces are stable with respect to the formation of additional phases, simplifying implementation and allowing the variational form of the evolution equations to be used. Additionally, we show that grand-potential-based phase-field models are capable of simulating phase separation, and we derive conditions under which this is possible.

5.
Sci Rep ; 8(1): 6629, 2018 Apr 26.
Article in English | MEDLINE | ID: mdl-29700395

ABSTRACT

Nano-structured superlattices may have novel physical properties and irradiation is a powerful mean to drive their self-organization. However, the formation mechanism of superlattice under irradiation is still open for debate. Here we use atomic kinetic Monte Carlo simulations in conjunction with a theoretical analysis to understand and predict the self-organization of nano-void superlattices under irradiation, which have been observed in various types of materials for more than 40 years but yet to be well understood. The superlattice is found to be a result of spontaneous precipitation of voids from the matrix, a process similar to phase separation in regular solid solution, with the symmetry dictated by anisotropic materials properties such as one-dimensional interstitial atom diffusion. This discovery challenges the widely accepted empirical rule of the coherency between the superlattice and host matrix crystal lattice. The atomic scale perspective has enabled a new theoretical analysis to successfully predict the superlattice parameters, which are in good agreement with independent experiments. The theory developed in this work can provide guidelines for designing target experiments to tailor desired microstructure under irradiation. It may also be generalized for situations beyond irradiation, such as spontaneous phase separation with reaction.

6.
Small ; 5(22): 2576-80, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19714732

ABSTRACT

Gallium arsenide nanowires are grown on 100 GaAs substrates, adopting the epitaxial relation and thus growing with an angle around 35 degrees off the substrate surface. These straight nanowires are irradiated with different kinds of energetic ions. Depending on the ion species and energy, downwards or upwards bending of the nanowires is observed to increase with ion fluence. In the case of upwards bending, the nanowires can be aligned towards the ion beam direction at high fluences. Defect formation (vacancies and interstitials) within the implantation cascade is identified as the key mechanism for bending. Monte Carlo simulations of the implantation are presented to substantiate the results.


Subject(s)
Arsenicals/chemistry , Crystallization/methods , Gallium/chemistry , Nanotubes/chemistry , Nanotubes/radiation effects , Semiconductors , Arsenicals/radiation effects , Gallium/radiation effects , Ions , Macromolecular Substances/chemistry , Macromolecular Substances/radiation effects , Molecular Conformation/radiation effects , Nanotechnology/methods , Nanotubes/ultrastructure , Particle Size , Surface Properties
7.
Nanotechnology ; 17(4): 1067-71, 2006 Feb 28.
Article in English | MEDLINE | ID: mdl-21727383

ABSTRACT

Details of the vapour-liquid-solid Au droplet catalysed growth of ZnS nanobelts are elucidated in this work. The inclination of the Au droplet after solidification shows that it is indeed in the liquid state during nanobelt growth. Numerous stacking faults are observed when (0001) wurtzite is the side surface of the nanobelt. Compressive stress at the droplet-nanobelt-atmosphere triple interface is the cause of the stacking faults. Sawteeth-like structures are observed on the Zn-terminated polar (0001) side surface only. These surfaces are chemically active, while S-terminated [Formula: see text] surfaces and non-polar surfaces are not. On these active surfaces, autocatalysed vapour-solid growth leads to the formation of the observed sawteeth.

SELECTION OF CITATIONS
SEARCH DETAIL
...