Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Int ; 144: 106035, 2020 11.
Article in English | MEDLINE | ID: mdl-32835921

ABSTRACT

The World Health Organization Global Action Plan recommends integrated surveillance programs as crucial strategies for monitoring antibiotic resistance. Although several national surveillance programs are in place for clinical and veterinary settings, no such schemes exist for monitoring antibiotic-resistant bacteria in the environment. In this transnational study, we developed, validated, and tested a low-cost surveillance and easy to implement approach to evaluate antibiotic resistance in wastewater treatment plants (WWTPs) by targeting cefotaxime-resistant (CTX-R) coliforms as indicators. The rationale for this approach was: i) coliform quantification methods are internationally accepted as indicators of fecal contamination in recreational waters and are therefore routinely applied in analytical labs; ii) CTX-R coliforms are clinically relevant, associated with extended-spectrum ß-lactamases (ESBLs), and are rare in pristine environments. We analyzed 57 WWTPs in 22 countries across Europe, Asia, Africa, Australia, and North America. CTX-R coliforms were ubiquitous in raw sewage and their relative abundance varied significantly (<0.1% to 38.3%), being positively correlated (p < 0.001) with regional atmospheric temperatures. Although most WWTPs removed large proportions of CTX-R coliforms, loads over 103 colony-forming units per mL were occasionally observed in final effluents. We demonstrate that CTX-R coliform monitoring is a feasible and affordable approach to assess wastewater antibiotic resistance status.


Subject(s)
Cefotaxime , Water Purification , Anti-Bacterial Agents/pharmacology , Asia , Australia , Cefotaxime/pharmacology , Europe , North America , Surveys and Questionnaires , Wastewater
2.
Water Res ; 162: 320-330, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31288142

ABSTRACT

There is increasing public concern regarding the fate of antibiotic resistance genes (ARGs) during wastewater treatment, their persistence during the treatment process and their potential impacts on the receiving water bodies. In this study, we used quantitative PCR (qPCR) to determine the abundance of nine ARGs and a class 1 integron associated integrase gene in 16 wastewater treatment plant (WWTP) effluents from ten different European countries. In order to assess the impact on the receiving water bodies, gene abundances in the latter were also analysed. Six out of the nine ARGs analysed were detected in all effluent and river water samples. Among the quantified genes, intI1 and sul1 were the most abundant. Our results demonstrate that European WWTP contribute to the enrichment of the resistome in the receiving water bodies with the particular impact being dependent on the effluent load and local hydrological conditions. The ARGs concentrations in WWTP effluents were found to be inversely correlated to the number of implemented biological treatment steps, indicating a possible option for WWTP management. Furthermore, this study has identified blaOXA-58 as a possible resistance gene for future studies investigating the impact of WWTPs on their receiving water.


Subject(s)
Anti-Bacterial Agents , Wastewater , Drug Resistance, Microbial , Europe , Genes, Bacterial , Surveys and Questionnaires
3.
Environ Sci Technol ; 50(21): 11825-11836, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27689892

ABSTRACT

Integrons are extensively targeted as a proxy for anthropogenic impact in the environment. We developed a novel high-throughput amplicon sequencing pipeline that enables characterization of thousands of integron gene cassette-associated reads, and applied it to acquire a comprehensive overview of gene cassette composition in effluents from wastewater treatment facilities across Europe. Between 38 100 and 172 995 reads per-sample were generated and functionally characterized by screening against nr, SEED, ARDB and ß-lactamase databases. Over 75% of the reads were characterized as hypothetical, but thousands were associated with toxin-antitoxin systems, DNA repair, cell membrane function, detoxification and aminoglycoside and ß-lactam resistance. Among the reads characterized as ß-lactamases, the carbapenemase blaOXA was dominant in most of the effluents, except for Cyprus and Israel where blaGES was also abundant. Quantitative PCR assessment of blaOXA and blaGES genes in the European effluents revealed similar trends to those displayed in the integron amplicon sequencing pipeline described above, corroborating the robustness of this method and suggesting that these integron-associated genes may be excellent targets for source tracking of effluents in downstream environments. Further application of the above analyses revealed several order-of-magnitude reductions in effluent-associated ß-lactamase genes in effluent-saturated soils, suggesting marginal persistence in the soil microbiome.


Subject(s)
Integrons/genetics , Wastewater , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Molecular Sequence Data , Sequence Analysis, DNA , beta-Lactam Resistance/genetics , beta-Lactamases/metabolism
4.
Water Res ; 42(16): 4386-92, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18718629

ABSTRACT

The anaerobic digester is a vital component in a zero-discharge mariculture system as therein most of the organic matter is mineralized and nitrogen-containing compounds are converted to gaseous N(2). Although denitrification is a major respiratory process in this nitrate-rich treatment stage, also sulfate respiration takes place and may cause undesirable high sulfide concentrations in the effluent water. To examine the effect of sulfide on nitrate reduction, in situ depth profiles of inorganic nitrogen and sulfur compounds were determined. Additionally, nitrate reduction was examined as a function of ambient sulfide concentrations in sludge collected from different locations in the anaerobic reactor. Depth profiles showed high concentrations of nitrate and low concentrations of sulfide and ammonia in the aqueous layer of the reactor. A sharp decrease of nitrate and an increase in sulfide and ammonia concentrations was measured at the water-sludge interface. Nitrate reduction was highest in this interface zone with rates of up to 8.05+/-0.57 micromol NO(3)(-)h(-1)g((sludge))(-1). Addition of sulfide increased the nitrate reduction rate at all sludge depths, pointing to the important role of autotrophic denitrification in the anaerobic reactor. Dissimilatory nitrate reduction to ammonia (DNRA) was found to be low in all sludge layers but was enhanced when sludge was incubated at high sulfide concentrations. Although nitrate reduction rates increased as a result of sulfide addition to sludge samples, no differences in nitrate reduction rates were observed between the samples incubated with different initial sulfide concentrations. This as opposed to sulfide oxidation rates, which followed Michaelis-Menten enzymatic kinetics. Partial oxidation of sulfide to elemental sulfur instead of a complete oxidation to sulfate, could explain the observed patterns of nitrate reduction and sulfide oxidation in sludge incubated with different initial sulfide concentrations.


Subject(s)
Aquaculture/instrumentation , Nitrates/chemistry , Sewage/chemistry , Sulfides/chemistry , Anaerobiosis , Bioreactors , Minerals , Nitrates/metabolism , Nitrogen/chemistry , Sulfides/metabolism
5.
Appl Environ Microbiol ; 74(9): 2841-51, 2008 May.
Article in English | MEDLINE | ID: mdl-18344353

ABSTRACT

We studied the impact of NO(3)(-) on the bacterial community composition, diversity, and function in in situ industrial, anaerobic biofilms by combining microsensor profiling, (15)N and (35)S labeling, and 16S rRNA gene-based fingerprinting. Biofilms were grown on carbon steel coupons within a system designed to treat seawater for injection into an oil field for pressurized oil recovery. NO(3)(-) was added to the seawater in an attempt to prevent bacterial H(2)S generation and microbially influenced corrosion in the field. Microprofiling of nitrogen compounds and redox potential inside the biofilms showed that the zone of highest metabolic activity was located close to the metal surface, correlating with a high bacterial abundance in this zone. Upon addition, NO(3)(-) was mainly reduced to NO(2)(-). In biofilms grown in the absence of NO(3)(-), redox potentials of <-450 mV at the metal surface suggested the release of Fe(2+). NO(3)(-) addition to previously untreated biofilms induced a decline (65%) in bacterial species richness, with Methylophaga- and Colwellia-related sequences having the highest number of obtained clones in the clone library. In contrast, no changes in community composition and potential NO(3)(-) reduction occurred upon subsequent withdrawal of NO(3)(-). Active sulfate reduction was below detection levels in all biofilms, but S isotope fractionation analysis of sulfide deposits suggested that it must have occurred either at low rates or episodically. Scanning electron microscopy revealed that pitting corrosion occurred on all coupons, independent of the treatment. However, uniform corrosion was clearly mitigated by NO(3)(-) addition.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/classification , Bacteria/drug effects , Biofilms/drug effects , Nitrates/pharmacology , Bacteria/growth & development , Bacteria/metabolism , Biodiversity , Biofilms/growth & development , DNA Fingerprinting , Nitrogen Compounds/analysis , Nitrogen Isotopes/metabolism , Oxidation-Reduction , RNA, Ribosomal, 16S/genetics , Seawater/microbiology , Steel , Sulfur Radioisotopes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...