Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 263: 120225, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34340052

ABSTRACT

In this study, highly reproducible MIR spectroscopy and highly sensitive MALDI-ToF-MS data were directly compared for the metabolomic profiling of monofloral and multifloral honey samples from three different botanical origins canola, acacia, and honeydew. Subsequently, three different classification models were applied to the data of both techniques, PCA-LDA, PCA- kNN, and soft independent modelling by class analogy (SIMCA) as class modelling technique. All monofloral external test set samples were classified correctly by PCA-LDA and SIMCA with both data sets, while multifloral test set samples could only be identified as outliers by the SIMCA technique, which is a crucial aspect in the authenticity control of honey. The comparison of the two used analytical techniques resulted in better overall classification results for the monofloral external test set samples with the MIR spectroscopic data. Additionally, clearly more multifloral external samples were identified as outliers by MIR spectroscopy (91.3%) as compared to MALDI-ToF-MS (78.3%). The results indicate that the high reproducibility of the used MIR technique leads to a generally better ability of separating monofloral honeys and in particular, identifying multifloral honeys. This demonstrates that benchtop-based techniques may operate on an eye-level with high-end laboratory-based equipment, when paired with an optimal data analysis strategy.


Subject(s)
Honey , Flowers , Honey/analysis , Reproducibility of Results , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spectrum Analysis
2.
J Agric Food Chem ; 69(5): 1727-1738, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33527826

ABSTRACT

A prototype dual-detection headspace-gas chromatography-mass spectrometry-ion mobility spectrometry (HS-GC-MS-IMS) system was used for the analysis of the volatile profile of 47 Citrus juices including grapefruit, blood orange, and common sweet orange juices without requiring any sample pretreatment. Next to reduced measurement times, substance identification could be improved substantially in case of co-elution by considering the characteristic drift times and m/z ratios obtained by IMS and MS. To discriminate the volatile profiles of the different juice types, extensive data analysis was performed with both datasets, respectively. By principal component analysis (PCA), a distinct separation between grapefruit and orange juices was observed. While in the IMS data grapefruit juices not from fruit juice concentrate could be separated from grapefruit juices reconstituted from fruit juice concentrate, in the MS data, the blood orange juices could be differentiated from the orange juices. This observation leads to the assumption that the IMS and MS data contain different information about the composition of the volatile profile. Subsequently, linear discriminant analysis (LDA), support vector machines (SVM), and the k-nearest-neighbor (kNN) algorithm were applied to the PCA data as supervised classification methods. Best results were obtained by LDA after repeated cross-validation for both datasets, with an overall classification and prediction ability of 96.9 and 91.5% for the IMS data and 94.5 and 87.9% for the MS data, respectively, which confirms the results obtained by PCA. Additional data fusion could not generally improve the model prediction ability compared to the single data, but rather for certain juice classes. Consequently, depending on the juice class, the most suitable dataset should be considered for the prediction of the class membership. This volatilomic approach based on the dual detection by HS-GC-MS-IMS and machine learning tools represent a simple and promising alternative for future authenticity control of Citrus juices.


Subject(s)
Citrus/chemistry , Fruit and Vegetable Juices/analysis , Gas Chromatography-Mass Spectrometry/methods , Volatile Organic Compounds/chemistry , Citrus/classification , Discriminant Analysis , Fruit and Vegetable Juices/classification , Machine Learning , Principal Component Analysis
3.
Anal Bioanal Chem ; 412(26): 7085-7097, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32754792

ABSTRACT

For the first time, a prototype HS-GC-MS-IMS dual-detection system is presented for the analysis of volatile organic compounds (VOCs) in fields of quality control of brewing hop. With a soft ionization and drift time-based ion separation in IMS and a hard ionization and m/z-based separation in MS, substance identification in the case of co-elution was improved, substantially. Machine learning tools were used for a non-targeted screening of the complex VOC profiles of 65 different hop samples for similarity search by principal component analysis (PCA) followed by hierarchical cluster analysis (HCA). Partial least square regression (PLSR) was applied to investigate the observed correlation between the volatile profile and the α-acid content of hops and resulted in a standard error of prediction of only 1.04% α-acid. This promising volatilomic approach shows clearly the potential of HS-GC-MS-IMS in combination with machine learning for the enhancement of future quality assurance of hops. Graphical abstract.


Subject(s)
Fermentation , Gas Chromatography-Mass Spectrometry/methods , Humulus , Ion Mobility Spectrometry/methods , Machine Learning , Quality Control , Volatile Organic Compounds/analysis , Principal Component Analysis , Reproducibility of Results , Solid Phase Microextraction/methods
4.
Anal Bioanal Chem ; 411(23): 6005-6019, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31250065

ABSTRACT

The potential benefit of data fusion based on different complementary analytical techniques was investigated for two different classification tasks in the field of foodstuff authentication. Sixty-four honey samples from three different botanical origins and 53 extra virgin olive oil samples from three different geographical areas were analyzed by attenuated total reflection IR spectroscopy (ATR/FT-IR) and headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS). The obtained datasets were combined in a low-level data fusion approach with a subsequent multivariate classification by principal component analysis-linear discriminant analysis (PCA-LDA) or partial least squares-discriminant analysis (PLS-DA). Performing a back projection of PCA loadings, the influence of variables in the FT-IR spectra (one-dimensional) and the GC-IMS profiles (two-dimensional) on the discrimination was visualized within the original axis of the two data sources. Validation results of the classification models were compared to the results that could be obtained by using the individual data blocks separately. For both the honey and olive oil samples, a decreased cross-validation error rate and more robust model was obtained due to the low-level data fusion. The results show that data fusion is an effective strategy for improving the classification performance, particularly for challenging classification tasks such as the discrimination of olive oils with different geographical origin. Graphical abstract.


Subject(s)
Food Analysis/methods , Gas Chromatography-Mass Spectrometry/methods , Honey/analysis , Olive Oil/analysis , Spectroscopy, Fourier Transform Infrared/methods , Discriminant Analysis , Food Quality , Least-Squares Analysis , Principal Component Analysis
6.
Food Chem ; 278: 720-728, 2019 Apr 25.
Article in English | MEDLINE | ID: mdl-30583434

ABSTRACT

For the first time, this study describes a HS-GC-IMS strategy for analyzing non-targeted volatile organic compounds (VOCs) profiles to distinguish between virgin olive oils of different classification. Correlations among measured flavor characteristics and sensory attributes evaluated by a test panel were determined by applying unsupervised (PCA, HCA) and supervised (LDA, kNN and SVM) chemometric techniques. PCA and HCA were applied for natural clustering of the samples and LDA, kNN, and SVM methods were used to create predictive models for olive oil classification. Identification of 26 target compounds revealed which compounds are responsible for discrimination, and how their distribution correlates with the sensory evaluation. In the investigated samples, LDA, kNN, and SVM models correctly classified 83.3%, 73.8%, and 88.1% of the samples, respectively. This suggests that mathematical correlations of HS-GC-IMS 3D fingerprints with the sensory analysis may be appropriate for calculating a good predictive value to classify virgin olive oils.


Subject(s)
Gas Chromatography-Mass Spectrometry/methods , Olive Oil/analysis , Cluster Analysis , Discriminant Analysis , Olive Oil/chemistry , Principal Component Analysis , Support Vector Machine , Temperature , Volatile Organic Compounds/analysis
7.
Anal Chem ; 90(3): 1777-1785, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29298045

ABSTRACT

This work describes a simple approach for the untargeted profiling of volatile compounds for the authentication of the botanical origins of honey based on resolution-optimized HS-GC-IMS combined with optimized chemometric techniques, namely PCA, LDA, and kNN. A direct comparison of the PCA-LDA models between the HS-GC-IMS and 1H NMR data demonstrated that HS-GC-IMS profiling could be used as a complementary tool to NMR-based profiling of honey samples. Whereas NMR profiling still requires comparatively precise sample preparation, pH adjustment in particular, HS-GC-IMS fingerprinting may be considered an alternative approach for a truly fully automatable, cost-efficient, and in particular highly sensitive method. It was demonstrated that all tested honey samples could be distinguished on the basis of their botanical origins. Loading plots revealed the volatile compounds responsible for the differences among the monofloral honeys. The HS-GC-IMS-based PCA-LDA model was composed of two linear functions of discrimination and 10 selected PCs that discriminated canola, acacia, and honeydew honeys with a predictive accuracy of 98.6%. Application of the LDA model to an external test set of 10 authentic honeys clearly proved the high predictive ability of the model by correctly classifying them into three variety groups with 100% correct classifications. The constructed model presents a simple and efficient method of analysis and may serve as a basis for the authentication of other food types.


Subject(s)
Chromatography, Gas/methods , Honey/analysis , Honey/classification , Ion Mobility Spectrometry/methods , Volatile Organic Compounds/analysis , Brassica napus/chemistry , Flowers/chemistry , Principal Component Analysis , Robinia/chemistry
8.
Anal Chem ; 88(19): 9368-9374, 2016 10 04.
Article in English | MEDLINE | ID: mdl-27603732

ABSTRACT

In process analytics, the applicability of Raman spectroscopy is restricted by high excitation intensities or the long integration times required. In this work, a novel Raman system was developed to minimize photon flux losses. It allows specific reduction of spectral resolution to enable the use of Raman spectroscopy for real-time analytics when strongly increased sensitivity is required. The performance potential of the optical setup was demonstrated in two exemplary applications: First, a fast exothermic reaction (Michael addition) was monitored with backscattering fiber optics under strongly attenuated laser power (7 mW). Second, high-speed scanning of a segmented multiphase flow (water/toluene) with submicroliter droplets was achieved by aligning the focus of a coaxial Raman probe with long focal length directly into a perfluoroalkoxy (PFA) capillary. With an acquisition rate of 333 Raman spectra per second, chemical information was obtained separately for both of the rapidly alternating phases. The experiment with reduced laser power demonstrates that the technique described in this paper is applicable in chemical production processes, especially in hazardous environments. Further potential uses can be envisioned in medical or biological applications with limited power input. The realization of high-speed measurements shows new possibilities for analysis of heterogeneous phase systems and of fast reactions or processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...