Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters











Publication year range
1.
Chemosphere ; 364: 143009, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39127192

ABSTRACT

The endocrine system and particularly thyroid hormones regulate almost all physiological processes in a timely manner in all vertebrates, from fish to reptiles to mammals, so risk assessment of endocrine disrupting chemicals (EDCs) is extremely important given their persistent presence in all environmental matrices. Resorcinol, as well as nonylphenol, octylphenol, and bisphenol A, F, S, are non-Halogenated Phenolic (non-HPCs) Chemicals known as EDCs. Resorcinol is a particular example in that most studies are based exclusively on humans while animal studies are few and often inadequate. The aim of this study was to assess the effects of exposure to different doses of resorcinol on the thyroid gland of the lizard Podarcis siculus during different periods of the thyroid gland activity cycle. Our results showed histopathologic changes in thyroid (follicular cell height increase and colloid area decrease), a thyroid weight increase in combination with serum T4 and T3 decrease, serum TSH, TRH increase in male lizards treated with 0.8,3.9,13.1, and 36.9 mg/kg/d of resorcinol. Besides, we also investigated the impacts of resorcinol treatments on hepatic 5'ORD (type II) deiodinase and hepatic content of T3 and T4. Our findings showed that they are in agreement with in vivo in humans and in rodents data and therefore, resorcinol in reptiles may meet the WHO definition of ECDs.


Subject(s)
Endocrine Disruptors , Lizards , Resorcinols , Thyroid Gland , Animals , Endocrine Disruptors/toxicity , Thyroid Gland/drug effects , Male , Resorcinols/toxicity , Thyroid Hormones/metabolism , Thyroxine/blood , Thyrotropin/blood
2.
Antioxidants (Basel) ; 13(7)2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39061902

ABSTRACT

Vitis vinifera L. is a natural source of bioactive compounds that is already used for cosmeceutical and nutraceutical approaches. However, their phytochemical and antioxidant properties, although studied, have not been fully explored. We aimed to characterize V. vinifera L. cv. Falanghina seed extracts in different polarity solvents (hexane, ethyl acetate, ethanol, and a mixture of acetone-water) for their phytochemical contents, including the total phenolic compound content (TPC), free radical scavenging capacities, and antioxidant ability on HepG2 cells. We directly profiled the functional quality of V. vinifera seed extracts against H2O2-induced oxidative stress in HepG2 cells, focusing on mitochondrial functions. The content of bioactive compounds was characterized by LC-MS. To assess the cytocompatibility of the extracts, a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was conducted. Results showed that extraction with ethyl acetate (18.12 mg GAE·g-1) and ethanol solvents (18.07 mg GAE·g-1), through Soxhlet, and with an acetone-water mixture (14.17 mg GAE·g-1), through maceration, yielded extracts rich in (poly)phenols, with good scavenging and antioxidant activity (98.32 I% for ethanol solvents and 96.31 I% for acetone-water mixture). The antioxidant effect of polyphenols is at least partially due to their capacity to maintain mitochondrial biogenesis and mitophagy, which elevates mitochondrial efficiency, resulting in diminished ROS production, hence re-establishing the mitochondrial quality control. These findings highlight the valorization of Vitis by-products to improve food functional characteristics.

3.
Sci Total Environ ; 948: 174554, 2024 Oct 20.
Article in English | MEDLINE | ID: mdl-39004366

ABSTRACT

This study investigates P. ostreatus and A. bisporus biodegradation capacity of low density polyethylene (LDPE) oxidised to simulate environmental weathering. Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM) were used to analyse the degradation of LDPE treated with fungal cultures. Molecular implications of LDPE degradation by P. ostreatus and A. bisporus were evaluated by Reverse transcription followed by quantitative PCR (qRT-PCR) of lac, mnp and lip genes expression. After 90 days of incubation, FT-IR analysis showed, for both fungal treatments, an increasing in the intensity of peaks related to the asymmetric C-C-O stretching (1160 to 1000 cm-1) and the -OH stretching (3700 to 3200 cm-1) due to the formation of alcohols and carboxylic acid, indicating depolymerisation of LDPE. This was confirmed by the SEM analysis, where a widespread alteration of the surface morphology was observed for treated LDPE fragments. Results revealed that the exposure of P. ostreatus to oxidised LDPE treatment led to a significant increase in the expression of the lac6, lac7, lac9, lac10 and mnp2 genes, while A. bisporus showed an over-expression in lac2 and lac12 genes. The obtained results offer new perspectives for a biotechnological use of P. ostreatus and A. bisporus for plastic bioremediation.


Subject(s)
Biodegradation, Environmental , Lignin , Lignin/metabolism , Polyethylene/metabolism , Plastics/metabolism
4.
Sci Rep ; 14(1): 12068, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802505

ABSTRACT

Nowadays, secondary raw materials (SRM) obtained from plant matrices are of great interest for circular economy, suitable for sustainable measures to reduce environmental impact. This work focused on the extraction, characterization and quantification of compounds obtained from leaves and fruits of the Sicilian sumac, Rhus coriaria L. and their application as natural dyes on textile fibres. Extractions were performed with Extractor Naviglio®, maceration and ultrasound assisted methods and food-grade solvents (aqueous and hydroalcoholic) to evaluate the yields for dye compounds. The presence of colouring molecules was evaluated by UV-Vis spectrophotometer, and the extracts selected for colouring were quantified and characterized by LC-MS. The results showed that Extractor Naviglio® achieved the best extraction yield, and the ethanol-water mixture extracts had a higher amount of total phenolic compounds (TPC) and a higher content of total colouring compounds (TCC). These extracts were selected for subsequent applications as dyes for linen, cotton and wool. The chemical profile of selected extracts was rich in compounds such as gallotannin and anthocyanin class. Fibre dyeing was verified by recording CIELAB colouring coordinates. The results suggest that the dyes obtained from R. coriaria can be of great interest for artisanal and industrial processes, in accordance with environmental sustainability.


Subject(s)
Coloring Agents , Plant Extracts , Rhus , Rhus/chemistry , Coloring Agents/chemistry , Coloring Agents/analysis , Plant Extracts/chemistry , Plant Leaves/chemistry , Fruit/chemistry , Phenols/chemistry , Phenols/analysis , Textiles/analysis , Solvents/chemistry
5.
Environ Pollut ; 346: 123656, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38408506

ABSTRACT

A mesocosm experiment was set-up to investigate the effects of low-density polyethylene (LDPE) fragments deriving from plastic film on soil ecology, rhizosphere and plant (Salvia officinalis L.) fitness. The internal transcribed spacer (ITS) and 16S metagenomic analysis was adopted to evaluate taxonomic and functional shifts of both soil and rhizosphere under the influence of microplastics (MPs). Photosynthetic parameters and enzymes involved in oxidative stress were assessed to unveil the plant physiological state. MP fragments were analysed by scanning electron microscope (SEM) and metagenomics to investigate the plastisphere. Microbial biomarkers of MPs pollution were identified in soil and rhizosphere, reinforcing the concept of molecular biomonitoring. Overall, Bacillus, Nocardioides and Streptomyces genera are bacterial biomarkers of MPs pollution in soil whereas Aspergillus, Fusarium and Trichoderma genera, and Nectriaceae family are fungal biomarkers of MPs polluted soil. The data show that the presence of MPs promotes the abundance of taxa involved in the soil N cycle, but simultaneously reduces the endophytic interaction capability and enhances pathogen related functions at the rhizosphere level. A significant decrease in chlorophyll levels and increase of oxidative stress enzymes was observed in plants grown in MPs-polluted soil. The SEM observations of MPs fragments revealed a complex colonisation, where bacteria (Bacillus in MPSo and Microvirga in MPRz) and fungi (Aspergillus in MPSo and Trichoderma in MPRz) represent the main colonisers. The results demonstrate that the presence of MPs causes changes in the soil and rhizosphere microbial community and functions leading to negative effects on plant fitness.


Subject(s)
Salvia officinalis , Trichoderma , Microplastics , Rhizosphere , Soil , Plastics , Bacteria/genetics , Biomarkers , Biology , Soil Microbiology , Polyethylene
6.
Chemosphere ; 349: 140872, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38056715

ABSTRACT

In this study, the sources, abundance, and ecological implications of microplastic (MP) pollution in Volturno, one of the main rivers in southern Italy, were explored by investigating the MP concentration levels in sediments collected along the watercourse. The samples were sieved through 5- and 2-mm sieves and treated with selective organic solvents. The polymer classes polystyrene (PS), polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polycarbonate (PC), nylon 6 (PA6), and nylon 6,6 (PA66) were quantified using pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) and high-performance liquid chromatography (HPLC). Furthermore, a 16S rRNA metagenomic analysis was performed using next-generation sequencing in Ion Torrent™ to explore the bacterial taxonomy and ecological dynamics of sediment samples. The MPs were detected in all samples collected from the study area. PP and PET were the most abundant and frequently detected polymer types in the analysed samples. The total MP concentration ranged from 1.05 to 14.55 ppm (parts per million), identifying two distinct data populations: high- and low-MP-contaminated sediments. According to the Polymer Hazard Index (PHI), MP pollution was categorised as hazard levels III and IV (corresponding to the danger category). Metagenomic data revealed that the presence of MPs significantly affected the abundance of bacterial taxa; Flavobacteraceae and Nocardiaceae, which are known to degrade polymeric substances, were present in high-MP-contaminated sediments. This study provides new insights into the ecological relevance of MP pollution and suggests that microorganisms may serve as biomarkers of MP pollution.


Subject(s)
Microbiota , Water Pollutants, Chemical , Microplastics , Plastics , Ecosystem , RNA, Ribosomal, 16S , Polymers , Italy , Environmental Monitoring , Geologic Sediments
7.
Front Plant Sci ; 14: 1195673, 2023.
Article in English | MEDLINE | ID: mdl-37745992

ABSTRACT

The valorisation and conservation of plant genetic resources (PGRs) and wild fruit PGRs are critical to ensure the maintenance of genetic and cultural heritage and to promote new perspectives on resource use. New strategies to characterize PGRs are needed, and the omics approach can provide information that is still largely unknown. The Strawberry tree (Arbutus unedo L.) is an underutilized, drought and fire-resistant species distributed in the Mediterranean area and its berries have large ethnobotanical use. Although their phenolic profile and antioxidant capacity are known, they are not well characterised, particularly from a proteomic perspective. The aim of this work is the characterisation of two ecotypes of A. unedo (Campania and Sicily) from a molecular viewpoint to valorise and encourage the preservation of this wild fruit. Samples were collected from two different geographical areas to assess whether different geographical conditions could influence the characteristics of leaves and fruits at the three stages of ripening (green, veraison, red). Proteomic analysis identified 904 proteins, of which 122 showed significance along the ripening. Some of these differentially abundant proteins, such as chalcone synthase, show a marked increase during ripening. The protein functional classes with the highest representation are involved in protein and amino acid metabolism, glycolysis and in secondary metabolism. From a proteomic perspective, there are no differences between the fruits from the two regions compared by the ripening stage. However, the pedoclimatic metabolic imprinting allowed the observation of good diversity in the metabolomic profiles between the two ecotypes, especially for anthocyanins, 4 times more abundant in the Sicilian veraisoned fruit than in the Campania one, and catechins, with double the abundance in the Campania ecotype compared to the Sicilian ecotype in the green phase, but more abundant (3x) in the Sicilian veraisoned fruit. Phenolic compounds show a 20% greater abundance in the Campania green arbutus fruit than in the Sicilian one, values that then equalise as ripening progresses. Multi-omic characterisation enhanced the knowledge on a wild fruit plant species which shows specific adaptations and responses to the environment to be considered when addressing the issue of local agrobiodiversity.

8.
Front Plant Sci ; 14: 1205451, 2023.
Article in English | MEDLINE | ID: mdl-37645461

ABSTRACT

The rhizosphere effect occurring at the root-soil interface has increasingly been shown to play a key role in plant fitness and soil functionality, influencing plants resilience. Here, for the first time, we investigated whether the rootstock genotype on which Vitis vinifera L. cultivar Falanghina is grafted can influence the rhizosphere microbiome. Specifically, we evaluated to which extent the 5BB and 1103P rootstocks are able to shape microbial diversity of rhizosphere environment. Moreover, we explored the potential function of microbial community and its shift under plant genotype influence. We investigated seven vineyards subjected to the same pedo-climatic conditions, similar age, training system and management and collected twelve rhizosphere soil samples for metagenomic analyses and composite soil samples for physical-chemical properties. In this study, we used 16S rRNA gene-based metagenomic analysis to investigate the rhizosphere bacterial diversity and composition. Liner discriminant analysis effect size (LEFSe) was conducted for metagenomic biomarker discovery. The functional composition of sampled communities was determined using PICRUSt, which is based on marker gene sequencing profiles. Soil analyses involved the determination of texture, pH, Cation Exchange Capacity (CSC), Organic Carbon (OC), electrical conductivity (EC), calcium (Ca), magnesium (Mg), potassium (K) content, Phosphorous (P), nitrogen (N). The latter revealed that soil features were quite homogenous. The metagenomic data showed that the bacterial alpha-diversity (Observed OTUs) significantly increased in 1103P rhizosphere microbiota. Irrespective of cultivar, Pseudomonadota was the dominant phylum, followed by Actinomycetota > Bacteroidota > Thermoproteota. However, Actinomycetota was the major marker phyla differentiating the rhizosphere microbial communities associated with the different rootstock types. At the genus level, several taxa belonging to Actinomycetota and Alphaproteobacteria classes were enriched in 1103P genotype rhizosphere. Investigating the potential functional profile, we found that most key enzyme-encoding genes involved in N cycling were significantly more abundant in 5BB rootstock rhizosphere soil. However, we found that 1103P rhizosphere was enriched in genes involved in C cycle and Plant Growth Promotion (PGP) functionality. Our results suggest that the different rootstocks not only recruit specific bacterial communities, but also specific functional traits within the same environment.

9.
J Cardiothorac Surg ; 18(1): 7, 2023 Jan 07.
Article in English | MEDLINE | ID: mdl-36611164

ABSTRACT

We report the case of an endovascular repair of an aortic arch aneurysm by a surgeon-modified fenestrated endograft with a single fenestration in a high-risk patient unfit for open surgery. A patient of 84 years, chronic ischemic cardiopathic, suffering from prostate adenocarcinoma in chemotherapy treatment, came to our hospital for post-traumatic fracture of the right femur. During the hospitalization, the patient exhibited dysphonia and respiratory disorders for several days, therefore, the patient performed Computed Tomography Angiography (CTA) that found the presence of voluminous aneurysm of the aortic arch with a maximum diameter of about 74 mm. The patient was treated with a hybrid-staged procedure; in the first instance, with a carotid-carotid-succlavium bypass to preserve the cerebral and upper limb vascularization and then, the procedure was completed by implanting the surgeon-modified fenestrated endograft with stent delivery to the patient with a fenestration on the anonymous trunk. This surgeon-modified fenestrated endograft was created by modifying a standard endograft by a single fenestration following the three-dimensional reconstructions of the CTA images. The procedure was successfully completed and postoperative course was uneventful. Computed Tomography Angiography demonstrated the exclusion of the aneurysm, patency of the implanted endograft modules, and absence of signs of endoleaks and / or cerebral or medullary ischemic complications.


Subject(s)
Aneurysm, Aortic Arch , Aortic Aneurysm, Thoracic , Blood Vessel Prosthesis Implantation , Endovascular Procedures , Surgeons , Male , Humans , Blood Vessel Prosthesis , Blood Vessel Prosthesis Implantation/methods , Aortic Aneurysm, Thoracic/complications , Stents , Prosthesis Design , Endovascular Procedures/methods , Treatment Outcome , Retrospective Studies
10.
Plants (Basel) ; 11(24)2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36559640

ABSTRACT

The intra- and interdomain phyllosphere microbiome features of Quercus ilex L. in a Mediterranean context is reported. We hypothesized that the main driver of the phyllosphere microbiome might be the season and that atmospheric pollutants might have a co-effect. Hence, we investigated the composition of epiphytic bacteria and fungi of leaves sampled in urban and natural areas (in Southern Italy) in summer and winter, using microscopy and metagenomic analysis. To assess possible co-effects on the composition of the phyllosphere microbiome, concentrations of particulate matter and polycyclic aromatic hydrocarbons (PAHs) were determined from sampled leaves. We found that environmental factors had a significative influence on the phyllosphere biodiversity, altering the taxa relative abundances. Ascomycota and Firmicutes were higher in summer and in urban areas, whereas a significant increase in Proteobacteria was observed in the winter season, with higher abundance in natural areas. Network analysis suggested that OTUs belonging to Acidobacteria, Cytophagia, unkn. Firmicutes(p), Actinobacteria are keystone of the Q. ilex phyllosphere microbiome. In addition, 83 genes coding for 5 enzymes involved in PAH degradation pathways were identified. Given that the phyllosphere microbiome can be considered an extension of the ecosystem services offered by trees, our results can be exploited in the framework of Next-Generation Biomonitoring.

11.
Sci Rep ; 12(1): 16413, 2022 09 30.
Article in English | MEDLINE | ID: mdl-36180725

ABSTRACT

A tool for urban forest Ecosystem services (ES) and disservices (ED) assessment has been developed to visualize (i) overall ES and ED value, (ii) ES-ED trade-off and (iii) explore principal influences in ES and ED provision. The Real Bosco di Capodimonte (RBC) (Naples, Southern Italy) has been chosen as a case study. ES and ED linked to urban forest plant cover were: biodiversity, carbon storage, gross and net carbon sequestration, lessen runoff, oxygen production, air pollution removal, UV effects reduction, pollen-related allergenicity risk, and volatile organic compounds (VOCs) emissions. A phytosociological survey was conducted and biodiversity value was evaluated. ES and ED were assessed by i-Tree Eco model and Index of Urban Green Zones Allergenicity (IUGZA). Results showed that 441 different plant species occur in the RBC and the most represented genera are Quercus and Trifolium, while the largest family was Asteraceae. Carbon storage and pollution removal were highest in natural forest, while remaining ES were greater in managed forest areas. Highest value for VOCs emission and allergenicity were assigned to managed and natural forest, respectively. Managed forest scored the highest ES-ED value, while managed grassland scored the lowest. Results highlighted the greater influence of plant cover structure in overall ES and ED provision levels, and management influence considering the same type of plant cover. The model could be a valuable tool for ES and ED effective management generally applicable in urban forests.


Subject(s)
Ecosystem , Volatile Organic Compounds , Carbon , Forests , Oxygen , Trees
12.
Front Nutr ; 9: 915994, 2022.
Article in English | MEDLINE | ID: mdl-35782922

ABSTRACT

This work focused on the extraction, quantification, and characterization of bioactive compounds of Arbutus unedo L. fruits, comparing the results obtained from the different ripening states. Extractions were performed by different methods (such as maceration extraction and ultrasonic extraction) and food grade solvents (aqueous and hydroalcoholic solvents) in each of the all ripening states (four states considered, associated with four different colors, i.e., green, yellow, orange, and red). The presence of (poly)phenols was quantified and characterized, and scavenging activity was determined by the Folin-Ciocâlteu reagent and the DPPH method, respectively. The content of bioactive compounds was characterized by LC-MS/MS, such as multiple reaction monitoring (MRM) mass spectrometry. The results showed that ultrasound-assisted extraction (UAE) performed better than maceration extraction; ethanol-water mixture extracts showed a more positive effect than the use of aqueous extracts regarding the content of total phenolic compounds. Overall, the total phenolic compounds in the EtOH:H2O mixture at a ratio of 7:3 (v:v) were higher than that of the other solvents for both extraction methods. Some bioactive molecules were characterized for the first time in the extracts of A. unedo. The chemical profile of the strawberry tree extracts depended on the degree of fruit ripeness. The results suggest that A. unedo fruits may be of great interest for food and nutraceutical applications.

13.
J Environ Manage ; 317: 115363, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35642821

ABSTRACT

Microplastics (MPs) are an emerging environmental pollutant, threatening marine and terrestrial ecosystems. Because of their properties and their widely varying size (5mm-0.1 µm), it is still difficult to define a valid and efficient method for extracting MPs from solid matrices. Among the several methods proposed, density separation is the most practical and cost-effective one. Progress is still ongoing towards a deeper understanding of the advantages and limitations related to the application of density separation for MPs extraction, the recovery yields and the factors that may influence it. In this context, we introduce the following work, which provides an early-stage insight into how the sediment texture may influence the efficiency of this extraction method, and how parameters, such as sedimentation time and extraction cycles, can be modified to always achieve the best recovery. Our focus has been directed on evaluating the extraction efficiency of HDPE MPs by density separation using NaCl, from three types of sediment: sandy (SS), sandy loam (SLS) and sandy-clay loam (SCLS). We investigated the impact of sedimentation time (1, 6, 12, 24 h) and extraction cycles (3 cycles for each sedimentation time) on MPs recovery. Finally, we determined the minimum amount of MPs (MPs g/g sediment) below which it is not possible to quantify MPs with the method used. The results have shown that the recovery efficiency of MPs from sediment is structure dependent. The highest recoveries are reached after a settling time of 1 and 6 h. Furthermore, for samples with minimum clay content (SS), only one extraction cycle is needed, whereas two extraction cycles are required for SLS and SCLS. The outcomes about the detection limit (LOD) of the method, showed the existence of an interaction MPs-clay/sediment, which allowed us to understand how far this extraction method is suitable in field, thus defining the minimum grade of MPs pollution (MPs g/g sediment) below which this method is no longer capable to extract MPs from contaminated samples.


Subject(s)
Microplastics , Water Pollutants, Chemical , Clay , Ecosystem , Environmental Monitoring/methods , Geologic Sediments/chemistry , Plastics , Polyethylene , Water Pollutants, Chemical/analysis
14.
Front Plant Sci ; 13: 852513, 2022.
Article in English | MEDLINE | ID: mdl-35599908

ABSTRACT

Soil pollution is a pressing problem requiring solutions that can be applied without large-scale side effects directly in the field. Phytoremediation is an effective strategy combining plant and root-associated microbiome to immobilize, degrade, and adsorb pollutants from the soil. To improve phytoremediation, it is necessary to think of plants, fungi, and bacteria not as individual entities, but as a meta-organism that reacts organically, synergistically, and cooperatively to environmental stimuli. Analyzing the tripartite enzymatic activity in the rhizosphere is necessary to understand the mechanisms underlying plant-microorganism communication under abiotic stress (such as soil pollution). In this work, the potential of a microbial consortium along with a plant already known for its phytoremediation capabilities, Schedonorus arundinaceus (Scheb.) Dumort., was validated in a mesocosm experiment with pluricontaminated soil (heavy metals, PAHs, and PCBs). Chemical analyses of the soil at the beginning and end of the experiment confirmed the reduction of the main pollutants. The microscopic observation and chemical analyses confirmed the greater root colonization and pollutant removal following the microbial treatment. To obtain a taxonomic and functional picture, tripartite (plant, fungi, and bacteria) enzyme activity was assessed using a metatranscriptomic approach. Total RNA was extracted from a sample of rhizosphere sampled considering 2 centimeters of root and soil attached. From the total reads obtained, mRNAs were filtered, and analysis focused on reads identified as proteins with enzymatic activity. The differential analysis of transcripts identified as enzymes showed that a general increase in potential enzyme activity was observed in the rhizosphere after our biotechnological treatment. Also from a taxonomic perspective, an increase in the activity of some Phyla, such as Actinobacteria and Basidiomycota, was found in the treated sample compared to the control. An increased abundance of enzymes involved in rhizospheric activities and pollutant removal (such as dehydrogenase, urease, and laccase) was found in the treated sample compared to the control at the end of the experiment. Several enzymes expressed by the plant confirmed the increase in metabolic activity and architectural rearrangement of the root following the enhancement of the rhizospheric biome. The study provides new outcomes useful in rhizosphere engineering advancement.

15.
Int J Mol Sci ; 23(9)2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35563180

ABSTRACT

Skin exposure is considered a potentially significant but little-studied pathway for PolyChlorinated Biphenyls uptake in terrestrial reptiles. In this study, a native Italian lizard, Podarcis siculus, was exposed to PCBs-contaminated soil for 120 days. Tissues distribution of PCBs, thyroid hormone levels, and thyroid histo-physiopathology were examined. The accumulation of PCBs in skin, plasma, liver, kidney, and brain were highest at 120 days. The alteration of triiodothyronine (T3) and thyroxine (T4) levels after different concentrations and times to exposure of PCBs was accompanied by the changes in the hormones involved in the hypothalamus-pituitary-thyroid (HPT) axis, namely Thyrotropin Releasing Hormone (TRH) and Thyroid Stimulating Hormone (TSH). Moreover, hepatic levels of deiodinase II (5'ORDII) and content of T3 were positively correlated to exposure to PCBs. These results indicated that in lizards, PCBs exposure through the skin has the potential to disrupt the thyroid endocrine system. Overall, the observed results indicate that PCBs could be associated with changes in thyroid homeostasis in these reptiles, through direct interactions with the metabolism of T4 and T3 through the HPT axis or indirect interactions with peripheral deiodination.


Subject(s)
Lizards , Polychlorinated Biphenyls , Animals , Male , Polychlorinated Biphenyls/toxicity , Soil , Thyroid Gland/metabolism , Thyrotropin/metabolism , Thyroxine/metabolism , Triiodothyronine/metabolism
16.
J Hazard Mater ; 435: 129029, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35525010

ABSTRACT

We explored relationships between particulate matter (PM) and polycyclic aromatic hydrocarbon (PAHs) leaf concentrations, uptake rates and leaf surface functional traits in four Mediterranean evergreen trees (Chamaerops humilis, Citrus × aurantium, Magnolia grandiflora, and Quercus ilex) during a dry month. Pollutant leaf concentration at different dates and uptake rate were correlated. We quantified PM by gravimetric analysis, PAHs were extracted from intact and dewaxed leaves and analyzed by GC-MS, and cuticle thickness, number and surface of stomata (Ns and SS) and trichomes (Nt and St) were determined by optical microscopy. Infrared spectroscopy was used to investigate the leaves surfaces composition and assess esterification index (E). Studied species were characterized by unique combinations of functional traits and pollutant uptake capacities. PM10 uptake scaled positively with SS, St and upper cuticle thickness (Tc,u) across species. PM2.5 uptake scaled positively with Tc,u, and thicker cuticles were also associated with greater shares of uptake of hydrophobic PM fractions. Uptakes of different fractions of PAH were generally weakly related to different leaf functional traits, except for some correlations with E and SS. We conclude that both plant surface morphological and chemical leaf traits influence PM and PAH retention, unveiling their potential role in air phytoremediation.


Subject(s)
Air Pollutants , Polycyclic Aromatic Hydrocarbons , Air Pollutants/analysis , Biodegradation, Environmental , Environmental Monitoring/methods , Particulate Matter/analysis , Plant Leaves , Polycyclic Aromatic Hydrocarbons/analysis
17.
Front Endocrinol (Lausanne) ; 13: 858330, 2022.
Article in English | MEDLINE | ID: mdl-35370975

ABSTRACT

Cardiovascular disease (CVD) is still the leading cause of death worldwide. Despite successful advances in both pharmacological and lifestyle strategies to fight well-established risk factors, the burden of CVD is still increasing. Therefore, it is necessary to further deepen our knowledge of the pathogenesis of the disease for developing novel therapies to limit even more its related morbidity and mortality. Oxidative stress has been identified as a common trait of several manifestations of CVD and could be a promising target for innovative treatments. Mitochondria are a major source of oxidative stress and sirtuins are a family of enzymes that generate different post-translational protein modifications, thus regulating important cellular processes, including cell cycle, autophagy, gene expression, and others. In particular, three sirtuins, SIRT3, SIRT4, and SIRT5 are located within the mitochondrial matrix where they regulate energy production and antioxidant pathways. Therefore, these sirtuins are strongly involved in the balance between oxidant and antioxidant mechanisms. In this review, we summarize the activities of these sirtuins with a special focus on their role in the control of oxidative stress, in relation to energy metabolism, atherosclerosis, and CVD.


Subject(s)
Cardiovascular Diseases , Sirtuins , Cardiovascular Diseases/metabolism , Homeostasis , Humans , Mitochondria/metabolism , Oxidation-Reduction , Sirtuins/physiology
18.
J Hazard Mater ; 428: 128246, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35030484

ABSTRACT

Phytoremediation involving the use of microorganisms with tolerant plant species represents a new frontier for on-site remediation of pluricontaminated soils. In this study, the effectiveness of a biotechnological strategy, involving the use of Festuca arundinacea and a pool of microorganisms, was assessed by a mesocosm experiment and an in-depth rhizospheric metatranscriptomic analysis. The chemical profile of mesocosm soil at the end of the experiment (240 days) showed that the decrease of trace elements such as Cd, Hg, Pb, Sn, Tl, V and Zn in the soil was enhanced by our biological combination. Additionally, also the organic pollutants (PAHs and PCBs) were strongly reduced up to 40.5%. About two million transcripts were identified and used for taxonomic and functional profiling. Transcripts read counts, tripartite among plant, bacteria and fungi were identified and quantified to provide an overview of the complex soil community composition. We observed that Actinobacteria and fungi abundance might be involved in remediation success. Functional analyses showed that Trehalose Biosynthesis and the antioxidant activity might have played a key-role in metaorganism effective interactions. The biotechnological approach remodeled the transcriptional profile toward organic pollutant degradation and heavy metal stress response.


Subject(s)
Festuca , Metals, Heavy , Soil Pollutants , Biodegradation, Environmental , Metals, Heavy/analysis , Soil , Soil Microbiology , Soil Pollutants/analysis
19.
J Hazard Mater ; 421: 126762, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34364207

ABSTRACT

Phytoremediation can be a promising and sustainable strategy to recovery Potentially Toxic Elements (PTEs) contaminated soils. However, at the field level, this tool can be limited by many issues. Herein, we combined native plant species with different cover type (mono and poly culture) in an in-field mesocosm experiment for the remediation of multi-contaminated soils from Bagnoli brownfield site (Southern Italy). We preliminary gain insights about the physical, chemical and biological features of the soils and subsequently induced a potential variation in the soil microbiome. We found that polyculture better respond both in terms of pollutant phytostabilization efficiency and from a stress tolerance perspective. Among plant species, Festuca achieved the best performance due to the overexpression of metal transporters able in both PTEs influx and sequestration from the cytoplasm. We achieved a site-specific bio-factory, which represents a strategy for the sustainable and relatively fast recovery of large contaminated areas.


Subject(s)
Festuca , Soil Pollutants , Biodegradation, Environmental , Metals , Soil , Soil Pollutants/analysis
20.
Clin Case Rep ; 9(9): e04778, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34603724

ABSTRACT

The combined used of thrombectomy with direct intravenous thrombolytic infusion provided effective treatment of DVT and uncovered an underlying left common iliac vein stenosis, which was successfully managed by angioplasty and stenting.

SELECTION OF CITATIONS
SEARCH DETAIL