Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
PLoS One ; 19(5): e0302933, 2024.
Article in English | MEDLINE | ID: mdl-38701075

ABSTRACT

Animals in urban areas often encounter novel and potentially stressful conditions. It is important to understand how wildlife cope with anthropogenic disturbance. To investigate this specific adaptation we live-trapped squirrels in two study sites in Warsaw: a forest reserve and an urban park and we estimated stress responses at three levels: long-term and medium-term stress (the level of stress hormones, i.e. cortisol and cortisone concentrations, in hair and feces) and acute reaction to human-induced stress (measured during handling with the aid of the three indices: breath rate, struggle rate, and vocalization). According to GLMM models no difference in the stress hormones level was found between the two populations. The only differences in cortisol concentrations clearly depended on the season, i.e. being higher in autumn and winter comparying to other seasons. There was no influence of sex, or reproductive status on stress hormones. Forest squirrels had significantly higher breath rates, suggesting they were more stressed by handling. There was no difference in the struggle rate between study areas, this index was mostly affected by season (i.e. being highest in winter). First-trapped squirrels vocalized less than during the subsequent trappings. Assumingly, during the first, and more stressful trapping, squirrels used 'freezing' and/or little vocalization, while during next captures they used alarm calls to warn conspecifics. Overall, we showed that the two squirrel populations differed only in terms of their breath rate. This suggests that they did not differ in medium-term and long-term stress in general, but they can differ in acute response to handling. This also suggests that both populations were similarly affected by environmental factors. The lack of clear effects may also be due to population heterogeneity. Thus, in order to assess the effects of anthropogenic stressors a broader range of indicators and diverse analytical methods, including behavioral analyses, should be employed.


Subject(s)
Hydrocortisone , Sciuridae , Stress, Physiological , Animals , Sciuridae/physiology , Hydrocortisone/metabolism , Hydrocortisone/analysis , Stress, Physiological/physiology , Humans , Male , Seasons , Female , Cities , Vocalization, Animal/physiology , Urban Population
2.
Int J Mol Sci ; 25(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38732201

ABSTRACT

This Special Issue (SI), "Emerging Topics in Metal Complexes: Pharmacological Activity", includes reports updating our knowledge on metals with multidirectional biological properties and metal-containing compounds/complexes for their potential therapeutic applications, with a focus on strategies improving their pharmacological features [...].


Subject(s)
Coordination Complexes , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/therapeutic use , Humans , Metals/chemistry , Animals
3.
Biology (Basel) ; 12(6)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37372151

ABSTRACT

In the present Special Issue on "Metals and Metal Complexes in Diseases with a Focus on COVID-19: Facts and Opinions", an attempt has been made to include reports updating our knowledge of elements considered to be potential candidates for therapeutic applications and certain metal-containing species, which are extensively being examined towards their potential biomedical use due to their specific physicochemical properties [...].

4.
Int J Mol Sci ; 24(10)2023 May 19.
Article in English | MEDLINE | ID: mdl-37240351

ABSTRACT

Neurodegenerative disorders, which are currently incurable diseases of the nervous system, are a constantly growing social concern. They are progressive and lead to gradual degeneration and/or death of nerve cells, resulting in cognitive deterioration or impaired motor functions. New therapies that would ensure better treatment results and contribute to a significant slowdown in the progression of neurodegenerative syndromes are constantly being sought. Vanadium (V), which is an element with a wide range of impacts on the mammalian organism, is at the forefront among the different metals studied for their potential therapeutic use. On the other hand, it is a well-known environmental and occupational pollutant and can exert adverse effects on human health. As a strong pro-oxidant, it can generate oxidative stress involved in neurodegeneration. Although the detrimental effects of vanadium on the CNS are relatively well recognized, the role of this metal in the pathophysiology of various neurological disorders, at realistic exposure levels in humans, is not yet well characterized. Hence, the main goal of this review is to summarize data on the neurological side effects/neurobehavioral alterations in humans, in relation to vanadium exposure, with the focus on the levels of this metal in biological fluids/brain tissues of subjects with some neurodegenerative syndromes. Data collected in the present review indicate that vanadium cannot be excluded as a factor playing a pivotal role in the etiopathogenesis of neurodegenerative illnesses, and point to the need for additional extensive epidemiological studies that will provide more evidence supporting the relationship between vanadium exposure and neurodegeneration in humans. Simultaneously, the reviewed data, clearly showing the environmental impact of vanadium on health, suggest that more attention should be paid to chronic diseases related to vanadium and to the assessment of the dose-response relationship.


Subject(s)
Environmental Pollutants , Neurodegenerative Diseases , Animals , Humans , Vanadium/toxicity , Brain , Environmental Pollutants/toxicity , Oxidative Stress , Neurodegenerative Diseases/chemically induced , Mammals
5.
Antioxidants (Basel) ; 11(4)2022 Apr 17.
Article in English | MEDLINE | ID: mdl-35453475

ABSTRACT

The present review was conducted to gather the available literature on some issues related to vanadium-quercetin (V-QUE) complexes. It was aimed at collecting data from in vitro and in vivo studies on the biological activity, behavior, antioxidant properties, and radical scavenging power of V-QUE complexes. The analysis of relevant findings allowed summarizing the evidence for the antidiabetic and anticarcinogenic potential of V-QUE complexes and suggested that they could serve as pharmacological agents for diabetes and cancer. These data together with other well-documented biological properties of V and QUE (common for both), which are briefly summarized in this review as well, may lay the groundwork for new therapeutic treatments and further research on a novel class of pharmaceutical molecules with better therapeutic performance. Simultaneously, the results compiled in this report point to the need for further studies on complexation of V with flavonoids to gain further insight into their behavior, identify species responsible for their physiological activity, and fully understand their mechanism of action.

6.
Biology (Basel) ; 11(2)2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35205082

ABSTRACT

The current report provides a brief overview of the clinical features, hematological/biochemical abnormalities, biomarkers, and AI-related strategies in COVID-19; presents in a nutshell the pharmacological and non-pharmacological therapeutic options; and concisely summarizes the most important aspects related to sociodemographic and behavioral factors as well as comorbidities having an impact on this disease. It also gives a brief outline of the effect of selected elements on immune response and collects data on the levels of micro-/macro-elements and toxic metals in the blood/urine of SARS-CoV-2 infected patients and on supplementation with minerals in COVID-19 subjects. Moreover, this review provides an overview of clinical trials based on the use of minerals alone or in combination with other agents that can provide effective responses toward SARS-CoV-2 infection. The knowledge compiled in this report lays the groundwork for new therapeutic treatments and further research on biomarkers that should be as informative as possible about the patient's condition and can provide more reliable information on COVID-19 course and prognosis. The collected results point to the need for clarification of the importance of mineral supplementation in COVID-19 and the relationships of the levels of some minerals with clinical improvement.

7.
Oxid Med Cell Longev ; 2021: 8447456, 2021.
Article in English | MEDLINE | ID: mdl-34950419

ABSTRACT

Oxidative stress (OS) is a mechanism underlying metal-induced toxicity. As a redox-active element, vanadium (V) can act as a strong prooxidant and generate OS at certain levels. It can also attenuate the antioxidant barrier and intensify lipid peroxidation (LPO). The prooxidant potential of V reflected in enhanced LPO, demonstrated by us previously in the rat liver, prompted us to analyze the response of the nuclear factor erythroid-derived 2-related factor 2/Kelch-like ECH-associated protein 1 (Nrf2-Keap1) system involved in cellular regulation of OS to administration of sodium metavanadate (SMV, 0.125 mg V/mL) and/or magnesium sulfate (MS, 0.06 mg Mg/mL). The levels of some Nrf2-dependent cytoprotective and detoxifying proteins, i.e., glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S-transferase (GST), glutamate cysteine ligase catalytic subunit (GCLC), glutathione synthetase (GSS), NAD(P) H dehydrogenase quinone 1 (NQO1), UDP-glucumno-syltransferase 1 (UGT1), and heme oxygenase 1 (HO-1); glutathione (GSH); metallothionein (MT1); and glutamate-cysteine ligase (GCL) mRNA were measured. We also focused on the V-Mg interactive effects and trends toward interactive action as well as relationships between the examined indices. The elevated levels of Nrf2, GCL mRNA, and GCL catalytic subunit (GCLC) confirm OS in response to SMV and point to the capacity to synthesize GSH. The results also suggest a limitation of the second step in GSH synthesis reflected by the unchanged glutathione synthetase (GSS) and GSH levels. The positive correlations between certain cytoprotective/detoxifying proteins (which showed increasing trends during the SMV and/or MS administration, compared to the control) and between them and malondialdehyde (MDA), the hepatic V concentration/total content, and/or V dose (discussed by us previously) point to cooperation between the components of antioxidant defense in the conditions of the hepatic V accumulation and SMV-induced LPO intensification. The V-Mg interactive effect and trend are involved in changes in Nrf2 and UGT1, respectively. The p62 protein has to be determined in the context of potential inhibition of degradation of Keap1, which showed a visible upward trend, in comparison with the control. The impact of Mg on MT1 deserves further exploration.


Subject(s)
Antioxidants/pharmacology , Cytoprotection , Gene Expression Regulation/drug effects , Liver Diseases/drug therapy , Magnesium/pharmacology , Oxidative Stress , Vanadates/pharmacology , Animals , Glutathione/metabolism , Glutathione Reductase/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Lipid Peroxidation , Liver Diseases/metabolism , Liver Diseases/pathology , Male , Malondialdehyde/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Rats , Rats, Wistar
8.
Acta Vet Scand ; 63(1): 24, 2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34112211

ABSTRACT

BACKGROUND: Captive European bison (Bison bonasus) play an active role in conservation measures for this species; this includes education, which may conflict with these animals' welfare. The effect of the presence of visitors on the welfare of captive animals can be negative, positive or neutral. However, the response of a given species to visitors is difficult to predict, since even closely related species display varying levels of tolerance to captivity. The aim of the study was to compare immunoreactive fecal cortisol levels (regarded as an indicator of the level of physiological stress) in groups of captive European bison that differed in terms of their social structure and the level of visitor pressure. The second aim was to determine if there was a correlation between intestinal parasitic burden and immunoreactive fecal cortisol levels. RESULTS: Immunoreactive fecal cortisol levels were not influenced by sex or age. However, study site and the interaction between study site and visitor pressure were statistically significant. European bison in one enclosure presented higher levels of immunoreactive fecal cortisol on weekdays than at weekends. In the other two study sites, the levels did not differ between weekdays and weekends. No correlation was found between parasitological infestation and immunoreactive fecal cortisol levels. CONCLUSIONS: Measurement of fecal cortisol metabolites could be a valuable method for further research into the welfare of European bison in captivity. More subtle factors such as individual animal characteristics, feeding systems, and the arrangement of enclosures can be of great importance in terms of the effect of visitors on animals. The results of this study can be used in guidelines for the management of European bison populations.


Subject(s)
Bison , Animal Welfare , Animals , Feces , Hydrocortisone
9.
J Trace Elem Med Biol ; 61: 126550, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32464446

ABSTRACT

BACKGROUND: The current knowledge about the effects of vanadium (V) on iron (Fe)-related proteins and Fe homeostasis (which is regulated at the systemic, organelle, and cellular levels) is still insufficient. OBJECTIVE: This fact and our earlier results prompted us to conduct studies with the aim to explain the mechanism of anemia accompanied by a rise in hepatic and splenic Fe deposition in rats receiving sodium metavanadate (SMV) separately and in combination with magnesium sulfate (MS). RESULTS: We demonstrated for the first time that SMV (0.125 mg V/mL) administered to rats individually and in conjunction with MS (0.06 mg Mg/mL) for 12 weeks did not cause significant differences in the hepatic hepcidin (Hepc) and hemojuvelin (HJV) concentrations, compared to the control. In comparison with the control, there were no significant changes in the concentration of transferrin receptor 1 (TfR1) in the liver of rats treated with SMV and MS alone (in both cases only a downward trend of 14% and 15% was observed). However, a significant reduction in the hepatic TfR1 level was found in rats receiving SMV and MS simultaneously. In turn, the concentration of transferrin receptor 2 (TfR2) showed an increasing trend in the liver of rats treated with SMV and/or MS. CONCLUSIONS: The experimental data suggest that the pathomechanism of the SMV-induced anemia is not associated with the effect of V on the concentration of Hepc in the liver, as confirmed by the unaltered hepatic HJV and TfR1 levels. Therefore, further studies are needed in order to check whether anemia that developed in the rats at the SMV administration (a) results from the inhibitory effect of V on erythropoietin (EPO) production, (b) is related to the effect of V on the induction of matriptase-2 (TMPRSS6) expression, or (c) is associated with the influence of this metal on haem synthesis.

10.
J Trace Elem Med Biol ; 61: 126508, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32305626

ABSTRACT

BACKGROUND: Vanadium (V) is an element with a wide range of effects on the mammalian organism. The ability of this metal to form organometallic compounds has contributed to the increase in the number of studies on the multidirectional biological activity of its various organic complexes in view of their application in medicine. OBJECTIVE: This review aims at summarizing the current state of knowledge of the pharmacological potential of V and the mechanisms underlying its anti-viral, anti-bacterial, anti-parasitic, anti-fungal, anti-cancer, anti-diabetic, anti-hypercholesterolemic, cardioprotective, and neuroprotective activity as well as the mechanisms of appetite regulation related to the possibility of using this element in the treatment of obesity. The toxicological potential of V and the mechanisms of its toxic action, which have not been sufficiently recognized yet, as well as key information about the essentiality of this metal, its physiological role, and metabolism with certain aspects on the timeline is collected as well. The report also aims to review the use of V in the implantology and industrial sectors emphasizing the human health hazard as well as collect data on the directions of further research on V and its interactions with Mg along with their character. RESULTS AND CONCLUSIONS: Multidirectional studies on V have shown that further analyses are still required for this element to be used as a metallodrug in the fight against certain life-threatening diseases. Studies on interactions of V with Mg, which showed that both elements are able to modulate the response in an interactive manner are needed as well, as the results of such investigations may help not only in recognizing new markers of V toxicity and clarify the underlying interactive mechanism between them, thus improving the medical application of the metals against modern-age diseases, but also they may help in development of principles of effective protection of humans against environmental/occupational V exposure.


Subject(s)
Organometallic Compounds/pharmacology , Vanadium/pharmacology , Animals , Anti-Infective Agents/adverse effects , Anti-Infective Agents/pharmacology , Anticholesteremic Agents/adverse effects , Anticholesteremic Agents/pharmacology , Antineoplastic Agents/adverse effects , Antineoplastic Agents/pharmacology , Cardiotonic Agents/adverse effects , Cardiotonic Agents/pharmacology , Humans , Hypoglycemic Agents/adverse effects , Hypoglycemic Agents/pharmacology , Neuroprotective Agents/adverse effects , Neuroprotective Agents/pharmacology , Organometallic Compounds/adverse effects , Vanadium/adverse effects
11.
J Appl Toxicol ; 40(6): 737-747, 2020 06.
Article in English | MEDLINE | ID: mdl-31975418

ABSTRACT

Exposure to vanadium has been associated with deleterious effects on the central nervous system in animals and humans. Although vanadium-derived pro-oxidant species were reported to be involved in vanadium-mediated neurotoxicity, the ability of this metal to induce oxidative stress markers in glial cells remains to be elucidated. In this study, we investigated the cytotoxicity and the generation of reactive oxygen species (ROS) and nitric oxide (NO) by mouse primary astrocytes after treatment with vanadyl sulfate (VOSO4 ) at concentrations of 20, 50, 100, 200, and 500 µM. The resazurin assay revealed that treatment with VOSO4 for 24 and 48 h at concentrations of 50 and 100 µM, respectively, or higher substantially induced astrocytic cytotoxicity. Intracellular ROS increased after 6-h exposure to the lowest concentration tested (20 µM VOSO4 ) and tended to intensify after 24- and 48-h treatments reaching significant values for 20 and 500 µM VOSO4 . In turn, NO production in the examined cells was elevated after exposure to all concentrations at the 6-, 24-, and 48-h incubation periods. Our study demonstrated the ability of VOSO4 to induce H2 O2 generation in cell-free DMEM/F12 medium. The H2 O2 levels were in the micromolar range (up to 5 µM) and were detected mostly during the first few minutes after VOSO4 addition, suggesting that the generated H2 O2 could not induce toxic effects on the cells. Taken together, these results show VOSO4 induced cytotoxicity in primary astrocyte cells, which may have resulted from vanadyl-stimulated intracellular ROS and NO generation in these cells.


Subject(s)
Astrocytes/drug effects , Nitric Oxide/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Vanadium Compounds/toxicity , Animals , Astrocytes/metabolism , Astrocytes/pathology , Biomarkers/metabolism , Cell Survival/drug effects , Cells, Cultured , Mice
12.
Curr Med Chem ; 26(29): 5456-5500, 2019.
Article in English | MEDLINE | ID: mdl-30621554

ABSTRACT

This review article is an attempt to summarize the current state of knowledge of the impact of Vanadium (V) on Oxidative Stress (OS) markers in vivo. It shows the results of our studies and studies conducted by other researchers on the influence of different V compounds on the level of selected Reactive Oxygen Species (ROS)/Free Radicals (FRs), markers of Lipid peroxidation (LPO), as well as enzymatic and non-enzymatic antioxidants. It also presents the impact of ROS/peroxides on the activity of antioxidant enzymes modulated by V and illustrates the mechanisms of the inactivation thereof caused by this metal and reactive oxygen metabolites. It also focuses on the mechanisms of interaction of V with some nonenzymatic compounds of the antioxidative system. Furthermore, we review the routes of generation of oxygen-derived FRs and non-radical oxygen derivatives (in which V is involved) as well as the consequences of FR-mediated LPO (induced by this metal) together with the negative/ positive effects of LPO products. A brief description of the localization and function of some antioxidant enzymes and low-molecular-weight antioxidants, which are able to form complexes with V and play a crucial role in the metabolism of this element, is presented as well. The report also shows the OS historical background and OS markers (determined in animals under V treatment) on a timeline, collects data on interactions of V with one of the elements with antioxidant potential, and highlights the necessity and desirability of conducting studies of mutual interactions between V and antioxidant elements.


Subject(s)
Biomarkers/analysis , Oxidative Stress/drug effects , Vanadium/pharmacology , Animals , Antioxidants , Biomarkers/metabolism , Free Radicals/analysis , Humans , Lipid Peroxidation/drug effects , Reactive Oxygen Species/analysis , Reactive Oxygen Species/metabolism , Vanadium/chemistry
13.
Chem Biol Interact ; 293: 1-10, 2018 Sep 25.
Article in English | MEDLINE | ID: mdl-30028963

ABSTRACT

The impact of vanadium (V) and magnesium (Mg) as sodium metavanadate (SMV, 0.125 mg V/ml) and magnesium sulfate (MS, 0.06 mg Mg/ml) on lipid peroxidation (LPO) and selected elements in the rat erythrocytes (RBCs) was investigated. Relationships between some indices determined in RBC were also studied. SMV alone (Group II) elevated the malondialdehyde level (MDARBC) (by 95% and 60%), compared with the control (Group I) and MS-supplemented rats (Group III), respectively, reduced the concentration of CuRBC (by 23.5%), in comparison with Group I, but did not change the levels of NaRBC, KRBC, and CaRBC, whereas MS alone (Group III) only reduced the CuRBC concentration (by 22%), compared with Group I. The SMV + MS combination (Group IV) reduced and elevated the CuRBC (by 24%) and CaRBC (by 111%) concentrations, respectively, in comparison with Groups I and III, and these changes were induced by the V-Mg antagonistic and synergistic interaction, respectively. The combined SMV + MS effect also enhanced the MDARBC level, compared with Groups I (by 79%) and III (by 47%) and slightly limited its concentration, compared with Group II, which, in turn, resulted from the distinct trend toward the V-Mg antagonistic interaction. We can conclude that V (as SMV) is able to stimulate LPO in rat RBCs and that V-Mg interactive effects are involved in changes in CuRBC, CaRBC, and MDARBC. Further studies are needed to elucidate the exact mechanisms of the V-Mg antagonistic/synergistic interactions and to provide insight into the biochemical mechanisms of changes in rats suffering from anemia [1], characterized by a disrupted antioxidant barrier in RBCs [2] and an intensified free radical process in these cells.


Subject(s)
Erythrocytes/metabolism , Magnesium Sulfate/metabolism , Oxides/metabolism , Vanadium Compounds/metabolism , Animals , Calcium/metabolism , Copper/metabolism , Erythrocytes/cytology , Erythrocytes/drug effects , Lipid Peroxidation/drug effects , Magnesium Sulfate/chemistry , Magnesium Sulfate/pharmacology , Male , Malondialdehyde/metabolism , Oxides/chemistry , Oxides/pharmacology , Rats , Rats, Wistar , Vanadium Compounds/chemistry , Vanadium Compounds/pharmacology
14.
Chem Biol Interact ; 284: 112-125, 2018 Mar 25.
Article in English | MEDLINE | ID: mdl-29453945

ABSTRACT

The impact of vanadium (V) and magnesium (Mg) applied as sodium metavanadate (SMV, 0.125 mg V/ml) and magnesium sulfate (MS, 0.06 mg Mg/ml) on oxidative stress markers in bone of male Wistar rats was investigated. Some of them were also measured in the liver, e.g. l-ascorbic acid (hepatic L-AA). Additionally, relationships between selected indices determined in bone were examined. SMV alone (Group II) did not significantly alter the level of TBARS and the activity of SOD, compared with the control (Group I), but it slightly reduced the GR activity (by 13%) and the L-AA level (by 15.5%). It also markedly lowered the activity of CAT and GPx (by 34% and 29%), and to some degree elevated the activity of GST (by 16%) and the hepatic L-AA level (by 119%). MS alone (Group III) decreased the TBARS level (by 49%), slightly lowered the L-AA concentration (by 14%), and reduced the SOD, GPx, and GR activities (by 31%, 40%, and 28%), but did not change the activity of CAT, compared with the control. Additionally, it elevated the GST activity (by 56%) and the hepatic L-AA level (by 40%). In turn, the SMV + MS combination (Group IV) reduced the TBARS level (by 38%) and the SOD, CAT, GPx, and GR activities (by 61%, 58%, 72%, and 40%) but elevated the GST activity (by 66%), compared with the control. The activity of SOD and GPx in the rats in Group IV was also reduced, compared with Group II (by 61% and 61%) and Group III (by 44% and 54%). In turn, the activities of CAT and GR were decreased, compared with Group III (by 55%) and Group II (by 31%), and the L-AA level was lowered, in comparison with Groups II and III (by 53% and 54%). Further, the concentration of V in the bone of rats in Groups II and IV increased, whereas the concentration of Mg decreased, compared with Groups I and III, in which the V and Mg levels dropped and were not altered, respectively, compared with Group I. The total content of Fe in the bone of rats in Groups II and IV increased, compared with Group III, in which the total Fe content did not change, compared with Group I. In turn, the total bone Cu content significantly decreased in the rats in Groups III and IV, compared with Groups I and II, whereas the total Zn content and the Ca concentration did not change markedly. The results provided evidence that the concentration of V used as SMV did not enhance LPO in bone, whereas Mg, at the selected level, markedly reduced LPO in this tissue. On the other hand, both elements administered separately and in combination disrupted the antioxidant defense mechanisms and homeostasis of some metals in bone tissue, which consequently may have contributed to disturbances in the balance in the activities of osteoblastic and osteoclastic cells, and thereby negatively affected bone health.


Subject(s)
Antioxidants/metabolism , Bone and Bones/drug effects , Lipid Peroxidation/drug effects , Magnesium/pharmacology , Vanadium/pharmacology , Animals , Bone and Bones/metabolism , Catalase/metabolism , Glutathione/metabolism , Glutathione Reductase/metabolism , Liver/drug effects , Liver/metabolism , Male , Malondialdehyde/metabolism , Rats , Rats, Wistar , Superoxide Dismutase/metabolism
15.
Chem Biol Interact ; 258: 214-33, 2016 Oct 25.
Article in English | MEDLINE | ID: mdl-27620816

ABSTRACT

Vanadium (V) and magnesium (Mg) arouse interest of many research centres worldwide. Many aspects of their action have already been recognized but some of them have not been fully elucidated yet. Relatively little is known about the mechanisms of absorption, transport, and excretion of V. There is also a lack of sufficient data about the most sensitive biomarkers of V toxicity and the mechanisms of its toxic action, which have not been fully explained yet. There is also a lack of comprehensive research on the consequences, character, and mechanisms of mutual interactions of V (which has strong pro-oxidant properties) with elements with an antioxidant potential such as Mg, the recognition of which, besides the cognitive value, may have great practical importance. It should be highlighted that the question of interactions between elements is always up to date and it is still an important issue in toxicology. A comprehensive research on interactions of V with Mg can be particularly important in the studies of the usage of V (which has a narrow margin of safety) in the treatment of certain diseases in humans, especially diabetes, which is accompanied by changes in the level of Mg in the tissues and weakening of the antioxidant barrier and oxidative stress. Therefore, the aspect concerning the possible interaction of V (as a potent pro-oxidant) with Mg (as an antioxidant) was the subject of our special interest. In addition, the examination of the effects of the interactions between V and Mg is very important especially for extending the knowledge of the mechanism of the influence of V on the organism and a potential role of Mg (which is characterized by a wide therapeutic window) in prevention of V toxicity. This review summarizes the most important results obtained from our experiments in a rodent model referring to the interactions of V with Mg on the background of the in vivo experimental data published by other researchers of this issue. Our studies have shown that V and Mg supplied in combination are able to modulate the response in an interactive manner to produce a specific effect that is distinct from that observed during separate administration thereof. The present report also provides the most important information about the effects of the action of V and Mg with other metals.


Subject(s)
Magnesium/metabolism , Vanadium/metabolism , Animals , Biomedical Research , Humans , Models, Animal , Models, Biological
17.
Metallomics ; 6(12): 2260-78, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25371215

ABSTRACT

The extent to which the 12 week separate and combined administration of vanadium (as sodium metavanadate--SMV, 0.125 mg V per ml) and magnesium (as magnesium sulphate--MS, 0.06 mg Mg per ml) affects bone mineral status and micromorphology as well as the alkaline phosphatase (ALP) activity in femoral diaphysis (FD) was examined in male rats. The bone chemical composition of SMV-exposed rats was also investigated. SMV alone or in combination with MS (as SMV-MS) reduced the levels of MgFD (by 21% and 20%) and PFD (by 12% and 9%), lowered the CaFD content (by 7% and 10%), and caused a rise of the FeFD concentration (by 22.5% and 17%), compared with the control; SMV alone also reduced and enhanced the KFD and ZnFD concentrations (by 19% and 15%, respectively) but remained without significant effect on the femoral bone surface roughness (FBSR), whereas MS alone lowered the VFD, PFD, and CuFD levels (by 42%, 10%, and 20.6%), reduced FBSR, and created the regular femoral bone surface shape. The SMV-MS combination also induced a decline and rise in the levels of CuFD (by 30%) and NaFD (by 15%), respectively, compared with the control and the MS-supplemented rats; elevated ALPFD activity (by 24%, 35%, and 40%), compared with the control, SMV-exposed, and MS-supplemented animals; and increased FBSR. Relationships between the root mean square roughness (Sq) and skewness (Ssk): Sq [MS < SMV < Control < SMV-MS] ⇔ Ssk [SMV-MS > Control > SMV > MS], ALPFD and Sq: ALPFD⇔ Sq [SMV-MS > Control > SMV > MS], and between other variables were demonstrated. A partial limitation of the drop in the PFD and KFD levels and normalization of the ZnFD concentration were a consequence of the V-Mg antagonistic interaction whereas a consequence of the V-Mg synergistic interaction was the increase in the NaFD level, ALPFD activity, and FBSR. Ca10(PO4)5(SiO4)(OH) was part of the inorganic component of the bone of the SMV-exposed rats.


Subject(s)
Femur/drug effects , Magnesium/pharmacology , Vanadium/pharmacology , Alkaline Phosphatase/metabolism , Analysis of Variance , Animals , Femur/chemistry , Femur/metabolism , Magnesium/chemistry , Magnesium/pharmacokinetics , Male , Rats , Rats, Wistar , Surface Properties/drug effects , Tissue Distribution , Vanadium/chemistry , Vanadium/pharmacokinetics
18.
Metallomics ; 6(4): 907-20, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24549458

ABSTRACT

The effect of 12 week co-administration of sodium metavanadate (SMV) and magnesium sulfate (MS) on the levels of some elements in selected rats' organs and an attempt to elucidate a role of divalent metal transporter 1 (DMT-1) in the mechanism(s) of the SMV-induced disorders in some tissue Fe homeostasis were studied. SMV taken up separately or in combination with MS may pose a risk of the rise and shortage of the total hepatic and splenic Fe and Cu contents, respectively, cerebral Fe deficiency, splenic Ca deposition, and the hepatic, renal, and cerebral DMT-1 down-regulation. When administered alone, SMV may also cause the decrease in the total renal Fe and Cu contents. A visible protective effect of Mg against the renal and cerebral V accumulation and the decrease in the renal Fe and Cu contents during the SMV-MS co-administration together with our previous findings suggest a beneficial role of Mg at SMV exposure. Further, the SMV-induced fall in total iron binding capacity (TIBC), reported previously, and its correlations with the hepatic, splenic, and cerebral Fe levels allow us to suggest that diminished TIBC could be partly involved in the mechanism(s) responsible for the dramatic redistribution of Fe in those tissues. Finally, DMT-1, which potentially could participate in the hepatic non-transferrin Fe-bound uptake, does not play a significant role in this process indicating the need for studying other Fe transporters to more precisely elucidate molecular mechanism(s) underlying the hepatic Fe loading in our experimental conditions.


Subject(s)
Cation Transport Proteins/metabolism , Iron/metabolism , Magnesium Sulfate/pharmacology , Protective Agents/pharmacology , Vanadates/toxicity , Animals , Iron/analysis , Magnesium Sulfate/administration & dosage , Male , Metals/analysis , Metals/metabolism , Protective Agents/administration & dosage , Rats , Rats, Wistar , Vanadates/administration & dosage
19.
Oxid Med Cell Longev ; 2013: 802734, 2013.
Article in English | MEDLINE | ID: mdl-23766862

ABSTRACT

The protective effect of magnesium as magnesium sulfate (MS) on sodium-metavanadate- (SMV-) induced lipid peroxidation (LPO) under in vivo and in vitro conditions was studied. The 18-week SMV intoxication (Group II, 0.125 V(end)/mL) enhanced spontaneous malondialdehyde (MDA) generation in rat liver, compared with the control (Group I) and MS-supplemented animals (Group III, 0.06 Mg(end)/mL). Coadministration of SMV with MS (Group IV, SMV-MS) caused a return of the MDA level to the control value range. The effect seems to result from the Mg(end)-independent action and its antagonistic interaction with V(end). The in vitro treatment of liver supernatants (LS) obtained from all the tested animals groups with selected exogenous concentrations of Fe(exg) or V(exg) exhibited enhanced MDA production, compared with spontaneously formed MDA. It also showed Mg(exg)-stimulating effect on LPO (LS I, Group I) and revealed that the changes in the MDA generation in LS IV (Group IV) might have resulted from the synergistic interactions of V(end) with Fe(exg) and V(exg) and from the antagonistic interactions of Mg(end) with Fe(exg) and V(exg). The findings allow a suggestion that adequate Mg intake for a specific period in the conditions of SMV exposure may prevent V-induced LPO in the liver.


Subject(s)
Lipid Peroxidation/drug effects , Liver/drug effects , Liver/metabolism , Magnesium Sulfate/pharmacology , Protective Agents/pharmacology , Vanadium/toxicity , Animals , Iron/pharmacology , Male , Malondialdehyde/metabolism , Rats , Rats, Wistar , Subcellular Fractions/drug effects , Subcellular Fractions/metabolism
20.
Indian J Exp Biol ; 51(9): 721-31, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24377132

ABSTRACT

The behaviour of Mg related to vanadium(V)-induced lipid peroxidation (LPO) under in vitro conditions was examined. The studies performed on the liver supernatants (LS) obtained from control, sodium metavanadate-intoxicated, and sodium metavanadate-magnesium sulphate-administered male Wistar rats revealed and confirmed the pro-oxidative potential of V. Simultaneously, they indicated that the improved Mg status may be one of the mechanisms by which the treatment with this element may contribute to reduction of oxidative stress under the conditions of vanadate exposure. On the other hand, the results confirmed that Mg may also stimulate LPO and demonstrated that the incubation conditions and the experimental treatment of the rats from which the liver supernatants were obtained affect the intensity of the examined free radical process.


Subject(s)
Lipid Peroxidation/drug effects , Magnesium/pharmacology , Vanadates/pharmacology , Animals , In Vitro Techniques , Liver/drug effects , Liver/metabolism , Male , Malondialdehyde/metabolism , Oxidative Stress , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...