Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Chemistry ; 30(22): e202304276, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38345891

ABSTRACT

Volatile organic compounds (VOCs), recognized as hazardous air contaminants, prompt the exploration of sustainable air purification methods. Solar photocatalytic oxidation emerges as a promising solution, utilizing semiconductor photocatalysts like titanium dioxide (TiO2). However, the raw material crisis necessitates reduced TiO2 usage, leading to investigations into TiO2 modification techniques. The study introduces a novel approach by employing natural fibers, specifically loofah sponge, as a TiO2 support. This method aims to maintain photocatalytic activity while minimizing TiO2 content. The article explores using halloysite, a natural clay mineral, as a supportive material, enhancing mechanical strength and adsorption properties. The resulting TiO2/loofah-halloysite composites are evaluated for their efficacy in gas-phase photocatalytic oxidation of toluene and ethanol, chosen as representative VOCs. The conversion of toluene and ethanol on the composite was 88 % and 39 %, respectively, with high selectivity toward CO2. In addition to its high performance, the bio-composite was stable for several conversion cycles, keeping the conversion activity unchanged. The study contributes to developing green hybrid materials for VOC removal, showcasing potential applications across industries.

2.
ACS Appl Bio Mater ; 6(2): 483-493, 2023 02 20.
Article in English | MEDLINE | ID: mdl-36651801

ABSTRACT

A nanodelivery system based on palladium nanoparticles (PdNP) and cisplatin (CisPt) was developed by physisorption of the drug onto the PdNP synthesized via a green redox process, using d-glucose and polyvinylpyrrolidone (PVP) as reducing and stabilizing/capping agents, respectively. UV-vis analysis and H2-evolution measurements were carried out to prove the nanoparticles' capability to act as bimodal theranostic nanomedicine, i.e., having both plasmonic and photocatalytic properties. XPS, XRD, and TEM allowed light to be shed on the chemical composition and morphology of the PdNP. The analysis of the UV-visible spectra evidenced plasmonic peak changes for the hybrid nanoparticle-drug assembly (Pd@CisPt), which pointed to a significant interaction of CisPt with the NP surface. The drug loading was quantitatively estimated by ICP-OES measurements, while DLS and AFM confirmed the strong association of the drug with the nanoparticle surface. The test of SOD-like activity in a cell-free environment proved the maintenance of the antioxidant capability of PdNP also in the Pd@CisPt systems. Finally, Pd@CisPt tested in prostate cancer cells (PC-3 line) unveiled the antitumoral action of the developed nanomedicine, related to reactive oxygen species (ROS) generation, with a condition of protein misfolding/unfolding and DNA damage, as evidenced by cytotoxicity and MitoSOX assays, as well as Raman microspectroscopy, respectively. Cell imaging by confocal microscopy evidenced cellular uptake of the nanoparticles, as well as dynamic processes of copper ion accumulation at the level of subcellular compartments. Finally, cell migration studies upon treatment with Pd@CisPt evidenced a tunable response between the inhibitory effect of CisPt and the enhanced rate of cell migration for the metal NP alone, which pointed out the promising potential of the developed theranostic nanomedicine in tissue regeneration.


Subject(s)
Antineoplastic Agents , Metal Nanoparticles , Male , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Metal Nanoparticles/therapeutic use , Metal Nanoparticles/chemistry , Theranostic Nanomedicine/methods , Palladium/pharmacology , Palladium/chemistry , Cisplatin/chemistry
3.
Materials (Basel) ; 16(2)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36676491

ABSTRACT

The interaction between CeO2-GO or CeO2-rGO and gold as co-catalysts were here investigated for solar H2 production by photoreforming of glycerol. The materials were prepared by a solar photoreduction/deposition method, where in addition to the activation of CeO2 the excited electrons were able to reduce the gold precursor to metallic gold and the GO into rGO. The presence of gold was fundamental to boost the H2 production, whereas the GO or the rGO extended the visible-light activity of cerium oxide (as confirmed by UV-DRS). Furthermore, the strong interaction between CeO2 and Au (verified by XPS and TEM) led to good stability of the CeO2-rGO-Au sample with the evolved H2 that increased during five consecutive runs of glycerol photoreforming. This catalytic behaviour was ascribed to the progressive reduction of GO into rGO, as shown by Raman measurements of the photocatalytic runs. The good charge carrier separation obtained with the CeO2-rGO-Au system allowed the simultaneous production of H2 and reduction of GO in the course of the photoreforming reaction. These peculiar features exhibited by these unconventional photocatalysts are promising to propose new solar-light-driven photocatalysts for green hydrogen production.

4.
Photochem Photobiol Sci ; 21(12): 2139-2151, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35988108

ABSTRACT

A set of metals modified TiO2 photocatalysts were prepared starting from titanium tetraisopropoxyde and different metal precursors to study the influence of the addition of the various foreign agents on the physico-chemical and photocatalytic properties of the catalysts. The powders were characterized by X-ray diffraction, Raman spectroscopy, specific surface area measurements, scanning electron microscopy, energy dispersive X-ray spectroscopy, UV-Vis diffuse reflectance spectroscopy, photoluminescence, temperature programmed desorption after CO2 adsorption. The photocatalytic activity was evaluated using as probe reactions the partial oxidation of three aromatic alcohols: benzyl alcohol (BA), 4-methoxy benzyl alcohol (4-MBA), and 4-hydroxy benzyl alcohol (4-HBA) under simulated solar light irradiation. Different oxidation and selectivity values were obtained for the three substrates depending not only on the type of metals but also on the nature and position of the substituent in the phenyl ring of benzyl alcohol. As a general behaviour, the doped samples allowed the achievement of a greater selectivity especially for 4-MBA even if sometimes with minor conversions. The presence of W or Nb was beneficial for both conversion and selectivity for all the substrates with respect to bare TiO2.


Subject(s)
Benzyl Alcohols
5.
Materials (Basel) ; 14(20)2021 Oct 10.
Article in English | MEDLINE | ID: mdl-34683530

ABSTRACT

A non-conventional approach to prepare titanium dioxide-reduced graphene oxide (TiO2-rGO) nanocomposites based on solar photoreduction is here presented. The standard hydro-solvothermal synthesis of the TiO2-rGO composites requires high temperatures and several steps, whereas the proposed one-pot preparation allows one to obtain the photocatalysts with a simple and green procedure, by exploiting the photocatalytic properties of titania activated by the solar irradiation. The TiO2-rGO catalysts were tested in the solar photodegradation of a widely adopted toxic herbicide (2,4-Dichlorophenoxyacetic acid, 2,4-D), obtaining the 97% of degradation after 3 h of irradiation. The as-prepared TiO2-rGO composites were more active compared to the same photocatalysts prepared through the conventional thermal route. The structural, optical, and textural properties of the composites, determined by Raman, Photoluminescence, Fourier Transform InfraRed (FTIR), UV-vis diffuse reflectance (DRS) spectroscopies, and N2 absorption-desorption measurements, showed as the solar irradiation favors the reduction of graphene oxide with higher efficiency compared to the thermal-driven synthesis. Furthermore, the possible toxicity of the as-synthesized composites was measured exposing nauplii of microcrustacean Artemia sp. to solutions containing TiO2-rGO. The good results in the 2,4-D degradation process and the easiness of the TiO2-rGO synthesis allow to consider the proposed approach a promising strategy to obtain performing photocatalysts.

6.
Sensors (Basel) ; 21(5)2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33804375

ABSTRACT

Gadolinium metal-organic frameworks (Gd-MOFs) and Eu-doped Gd-MOFs have been synthesized through a one-pot green approach using commercially available reagents. The 1,4-benzenedicarboxylic acid (H2-BDC) and 2,6-naphthalenedicarboxylic acid (H2-NDC) were chosen as ditopic organic linkers to build the 3D structure of the network. The Gd-MOFs were characterized using powder X-ray diffraction (XRD), FT-IR spectroscopy, field emission scanning electron microscopy (FE-SEM) and N2 adsorption-desorption analysis. The Gd-MOF structures were attributed comparing the XRD patterns, supported by the FT-IR spectra, with data reported in the literature for Ln-MOFs of similar lanthanide ionic radius. FE-SEM characterization points to the effect of the duration of the synthesis to a more crystalline and organized structure, with grain dimensions increasing upon increasing reaction time. The total surface area of the MOFs has been determined from the application of the Brunauer-Emmett-Teller method. The study allowed us to correlate the processing conditions and ditopic linker dimension to the network surface area. Both Gd-MOF and Eu-doped Gd-MOF have been tested for sensing of the inorganic ions such as Fe3+ and Cr2O72-.

7.
Chem Commun (Camb) ; 57(30): 3664-3667, 2021 Apr 18.
Article in English | MEDLINE | ID: mdl-33725066

ABSTRACT

A new porous material based on the first supramolecular cucurbituril-based nanosponge was synthesized by the functionalization of cucurbit[6]uril with twelve 1-(2-bromoethyl)-3-methyl-1H-imidazol-3-ium arms. The porous structure and the high adsorption capacity were demonstrated through surface area measurements and carbon dioxide adsorption. The new supramolecular sponge showed attractive properties such as (i) a highly porous structure that allowed CO2 capture, (ii) the possibility to reuse the adsorbed CO2 for organic synthesis, and (iii) an exciting thermal stability up to around 800 °C, with the potential use of this material in high temperature reactions. Finally, the reuse of CO2 was successfully investigated in the carboxylation reaction of phenylacetylene.

8.
Chemistry ; 26(42): 9206-9242, 2020 Jul 27.
Article in English | MEDLINE | ID: mdl-32311172

ABSTRACT

Although oxide nanoparticles are ubiquitous in science and technology, a multitude of compositions, phases, structures, and doping levels exist, each one requiring a variety of conditions for their synthesis and modification. Besides, experimental procedures are frequently dominated by high temperatures or pressures and by chemical contaminants or waste. In recent years, laser synthesis of colloids emerged as a versatile approach to access a library of clean oxide nanoparticles relying on only four main strategies running at room temperature and ambient pressure: laser ablation in liquid, laser fragmentation in liquid, laser melting in liquid and laser defect-engineering in liquid. Here, established laser-based methodologies are reviewed through the presentation of a panorama of oxide nanoparticles which include pure oxidic phases, as well as unconventional structures like defective or doped oxides, non-equilibrium compounds, metal-oxide core-shells and other anisotropic morphologies. So far, these materials showed several useful properties that are discussed with special emphasis on catalytic, biomedical and optical application. Yet, given the endless number of mixed compounds accessible by the laser-assisted methodologies, there is still a lot of room to expand the library of nano-crystals and to refine the control over products as well as to improve the understanding of the whole process of nanoparticle formation. To that end, this review aims to identify the perspectives and unique opportunities of laser-based synthesis and processing of colloids for future studies of oxide nanomaterial-oriented sciences.

9.
Orig Life Evol Biosph ; 49(1-2): 19-47, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31302843

ABSTRACT

Pyrite and organic matter closely coexist in some hydrothermally-altered gabbroic xenoliths from the Hyblean Plateau, Sicily. The representative sample consists of plagioclase, Fe-oxides, clinopyroxene, pyrite and minor amounts of many other minerals. Plagioclase displays incipient albitization, clinopyroxene is deeply corroded. Pyrite grains are widely replaced by spongy-textured magnetite, which locally hosts Ca-(and Fe-)sulfate micrograins and blebs of condensed organic matter. Whole-rock trace element distribution evidences that incompatible elements, particularly the fluid-mobile Ba, U and Pb, are significantly enriched with respect to N-MORB values. The mineralogical and geochemical characteristics of the sample, and its U-Pb zircon age of 216.9 ± 6.7 MA, conform to the xenolith-based viewpoint that the unexposed Hyblean basement is a relict of the Ionian Tethys lithospheric domain, mostly consisting of abyssal-type serpentinized peridotites with small gabbroic intrusions. Circulating hydrothermal fluids there favored the formation of hydrocarbons trough Fischer-Tropsch-type organic synthesis, giving also rise to sulfidization episodes. Subsequent variations in temperature and redox conditions of the system induced partial de-sulfidization, Fe-oxides precipitation and sulfate-forming reactions, also promoting poly-condensation and aromatization of the already-formed hydrocarbons. Here we show organic matter adhering to a crystal face of a microscopic pyrite grain. Pyrite surfaces, as abiotic analogues of enzymes, can adsorb and concentrate organic molecules, also acting as catalysts for a broad range of proto-biochemical reactions. The present data therefore may support established abiogenesis models suggesting that pyrite surfaces carried out primitive metabolic cycles in suitable environments of the early Earth, such as endolithic recesses in mafic rocks permeated by hydrothermal fluids.


Subject(s)
Evolution, Chemical , Iron/chemistry , Minerals/chemistry , Organic Chemicals/chemistry , Sulfides/chemistry , Sicily
10.
Sci Rep ; 9(1): 974, 2019 01 30.
Article in English | MEDLINE | ID: mdl-30700766

ABSTRACT

Two-dimensional (2D) nanomaterials have received much attention in recent years, because of their unusual properties associated with their ultra-thin thickness and 2D morphology. Besides graphene, a new 2D material, molybdenum disulfide (MoS2), has attracted immense interest in various applications. On the other hand, ball-milling process provides an original strategy to modify materials at the nanometer scale. This methodology represents a smart solution for the fabrication of MoS2 nanopowders extremely-efficient in adsorbing water contaminants in aqueous solution. This work reports a comprehensive morphological, structural, and physicochemical investigation of MoS2 nanopowders treated with dry ball-milling. The adsorption performances of the produced nanopowders were tested using methylene blue (MB) dye and phenol in aqueous solution. The adsorption capacity as a function of ball-milling time was deeply studied and explained. Importantly, the ball-milled MoS2 nanopowders can be easily and efficiently regenerated without compromising their adsorption capacity, so to be reusable for dye adsorption. The eventual toxic effects of the prepared materials on microcrustacean Artemia salina were also studied. The present results demonstrate that ball-milling of MoS2 offers a valid method for large-scale production of extremely efficient adsorbent for the decontamination of wastewaters from several pollutants.

11.
ChemistryOpen ; 6(1): 90-101, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28168154

ABSTRACT

In the field of ionic liquids (ILs), theory-driven modeling approaches aimed at the best fit for all available data by using a unique, and often nonlinear, model have been widely adopted to develop quantitative structure-property relationship (QSPR) models. In this context, we propose chemoinformatic and chemometric data-driven procedures that lead to QSPR soft models with local validity that are able to predict relevant physicochemical properties of ILs, such as viscosity, density, decomposition temperature, and conductivity. These models, which use readily available and easily interpretable VolSurf+ descriptors, represent an unexploited opportunity for experimentalists to model and predict the physicochemical properties of ILs in industrial R&D design.

12.
Sci Rep ; 7: 40663, 2017 01 18.
Article in English | MEDLINE | ID: mdl-28098185

ABSTRACT

This study presents a cross-correlated surface and near surface investigation of two phlogopite polytypes from Kasenyi kamafugitic rocks (SW Uganda) by means of advanced Atomic Force Microscopy (AFM), confocal microscopy and Raman micro-spectroscopy. AFM revealed comparable nanomorphology and electrostatic surface potential for the two mica polytypes. A widespread presence of nano-protrusions located on the mica flake surface was also observed, with an aspect ratio (maximum height/maximum width) from 0.01 to 0.09. Confocal microscopy showed these features to range from few nm to several µm in dimension, and shapes from perfectly circular to ellipsoidic and strongly elongated. Raman spectra collected across the bubbles showed an intense and convolute absorption in the range 3000-2800 cm-1, associated with weaker bands at 1655, 1438 and 1297 cm-1, indicating the presence of fluid inclusions consisting of aliphatic hydrocarbons, alkanes and cycloalkanes, with minor amounts of oxygenated compounds, such as carboxylic acids. High-resolution Raman images provided evidence that these hydrocarbons are confined within the bubbles. This work represents the first direct evidence that phlogopite, a common rock-forming mineral, may be a possible reservoir for hydrocarbons.

13.
J Colloid Interface Sci ; 489: 131-137, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-27554175

ABSTRACT

We have measured the photocatalytic water splitting activity of several titania colloids, modified by nanosecond pulsed laser irradiation. Photocatalysis has been tested using UV and visible light. We have found that laser irradiation increases the hydrogen production efficiency up to a factor of three for anatase, rutile and P25. A hydrogen production rate as high as 30mmolg-1h-1 has been obtained with good stability, tested by repeated runs. The chemical and morphological properties of the nanoparticles have been studied by electron microscopy, X-ray photoelectron spectroscopy and Raman spectroscopy, showing that laser irradiation promotes the formation of disordered surface state and lattice distortion which could be responsible for the observed enhanced photocatalytic activity.

14.
Toxicol Res (Camb) ; 5(4): 1090-1096, 2016 Jul 01.
Article in English | MEDLINE | ID: mdl-30090414

ABSTRACT

Recently derived in silico structural descriptors for both IL cations and anions allowed the development of a QSPR model correlating ionic liquid structures to Vibrio fischeri toxicity using the partial least squares (PLS) approach. Interpretation of the PLS model confirmed the effect of IL cationic structural features such as the influence of cation side chain length, presence of heteroatoms, and non-aromaticity of the heterocyclic scaffold on toxicity. The PLS model also provided a quantitative evaluation of anion effects, previously not evidenced due to the structural similarity of the anions considered. A simple equation in which three descriptors (two for the cations and one for the anions) allow the prediction of Vibrio fischeri toxicity for over 8000 ILs is reported.

15.
Invest New Drugs ; 27(3): 189-202, 2009 Jun.
Article in English | MEDLINE | ID: mdl-18612590

ABSTRACT

The novel compound N-benzoxazol-2-yl-N'-1-(isoquinolin-3-yl-ethylidene)-hydrazine (EPH136) has been shown to exhibit antitumor activity in vitro and in vivo. A COMPARE analysis showed that the patterns of cellular effects of EPH136 are not related to any of 175 standard antitumor agents with a known mechanism of action. In order to help identify the mechanism of action we employed a bioinformatics approach called partial least squares modelling in latent variables in which the expression levels of approximately 8,000 genes in each of 56 untreated NCI panel cell lines were correlated with the respective IC(50) values of each cell line following treatment with EPH136. The 60 genes found to be most important for the antiproliferative effect of EPH136 are involved in nucleoside, nucleotide, nucleic acid binding and metabolism, developmental processes, protein modification and metabolism. In addition, using a DNA microarray we measured the expression of approximately 5,000 known genes following treatment of HT-29 colon carcinoma cells with a two-fold IC(50) concentration of EPH136. The genes that were up-regulated more than two-fold compared to untreated controls belong to the same classes as found by the bioinformatic approach. Many of these proteins are regulated by oxidation/reduction and so we concluded that formation of radicals may be involved in the mechanism of action. We show here that EPH136 leads to generation of oxygen radicals, swelling of mitochondria and dissipation of the mitochondrial membrane potential. The antiproliferative activity of EPH136 was prevented by the radical scavenger N-acetylcysteine. Cells with elevated glutathione exhibited resistance to EPH136. In summary, the mechanism of the novel experimental anticancer drug EPH136 is generation of radicals and dissipation of the mitochondrial membrane potential.


Subject(s)
Antineoplastic Agents/pharmacology , Benzoxazoles/pharmacology , Free Radicals/metabolism , Hydrazones/pharmacology , Membrane Potential, Mitochondrial/drug effects , Antineoplastic Agents/chemistry , Antioxidants/pharmacology , Apoptosis/drug effects , Benzoxazoles/chemistry , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Computational Biology , DNA/biosynthesis , Drug Screening Assays, Antitumor , Gene Expression Regulation, Neoplastic/drug effects , Humans , Hydrazones/chemistry , Oligonucleotide Array Sequence Analysis , RNA/biosynthesis , Reactive Oxygen Species/metabolism , Ribonucleotide Reductases/antagonists & inhibitors
16.
Mol Biosyst ; 2(5): 231-9, 2006 May.
Article in English | MEDLINE | ID: mdl-16880941

ABSTRACT

In the present study we analysed the gene expression database provided by the National Cancer Institute in an attempt to correlate activity profiles of geldanamycin, 17AAG and 11 other analogues in 60 human tumor cell lines with their gene expression profiles determined by the cDNA microarray technique. On the basis of the activity profiles two classes of geldanamycin analogues could be distinguished, having geldanamycin and 17AAG, respectively, as prototype compounds (denominated as gelda-like and 17AAG-like classes). Application of the "soft" statistical methodology of PLS (partial least squares modelling in latent variables or projections to latent structures) allowed us to evaluate the influence of each gene expression target in determining the therapeutical responses. The transcript encoding the translocating chain-associated membrane protein (TRAM) showed a significant statistical correlation with activity profiles of 17AAG. In order to validate the role of TRAM in determining sensitivity to 17AAG we induced a selective knocking-down of this transcript by the RNA interference methodology in H226 non-small cell lung carcinoma cell line. The efficiency of double-stranded RNA oligonucleotides (short-interfering RNAs, siRNAs) was determined by measuring TRAM mRNA levels by quantitative real-time RT-PCR at different times (24-72 hours) after siRNA lipotransfection. A significant increase in chemosensitivity to 17AAG was observed in siRNA-silenced cells. Although a number of factors may affect tumour sensitivity to 17AAG the present methodology allowed us to dissect out a single parameter which may be partly responsible for its activity.


Subject(s)
Benzoquinones/therapeutic use , Lactams, Macrocyclic/therapeutic use , Neoplasms/drug therapy , Neoplasms/genetics , Antineoplastic Agents/therapeutic use , Cell Proliferation/drug effects , Gene Expression Profiling , Humans , Inhibitory Concentration 50 , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/physiology , Models, Biological , Multivariate Analysis , RNA Interference , RNA, Small Interfering/physiology , Transfection , Tumor Cells, Cultured
17.
Comput Biol Chem ; 29(3): 183-95, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15979038

ABSTRACT

Partial least squares discriminant analysis (PLS-DA) provides a sound statistical basis for the selection of a limited number of gene transcripts most effective in discriminating different lung tumoral histotypes. The potentialities of the PLS-DA approach are pointed out by its ability to identify genes which, according to current knowledge, are considered molecular markers for colon cancer diagnostics and classification. Indeed application of PLS-DA to in vivo data allowed identification of a set of genes able to discriminate primary lung tumours from colon metastases.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma/diagnosis , Gene Expression Profiling , Lung Neoplasms/diagnosis , Discriminant Analysis , Humans , Least-Squares Analysis
18.
Ann Chim ; 94(7-8): 547-54, 2004.
Article in English | MEDLINE | ID: mdl-15347202

ABSTRACT

The removal of organic species from aqueous solution by activated carbons is investigated. The latter ones are prepared from olive husks and almond shells. A wide range of surface area values are obtained varying temperature and duration of both carbonization and activation steps. The adsorption isotherm of phenol, catechol and 2,6-dichlorophenol involving the activated carbons prepared are obtained at 25 degrees C. The corresponding behavior is quantitatively correlated using classical isotherm, whose parameters are estimated by fitting the equilibrium data. A two component isotherm (phenol/2,6-dichlorophenol) is determined in order to test activated carbon behavior during competitive adsorption.


Subject(s)
Biomass , Charcoal/chemistry , Conservation of Natural Resources/methods , Phenols/chemistry , Vegetables/chemistry , Adsorption , Industrial Waste
19.
Biol Chem ; 384(2): 321-7, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12675527

ABSTRACT

A multivariate analysis of the National Cancer Institute gene expression database is reported here. The soft independent modelling of a class analogy approach achieved cell line classification according to histological origin. With the PCA method, based on the expression of 9605 genes and ESTs, classification of colon, leukaemia, renal, melanoma and CNS cells could be performed, but not of lung, breast and ovarian cells. Another multivariate procedure, called partial least squares discriminant analysis (PLS-DA), provides bioinformatic clues for the selection of a limited number of gene transcripts most effective in discriminating different tumoral histotypes. Among them it is possible to identify candidates in the development of new diagnostic tests for cancer detection and unknown genes deserving high priority in further studies. In particular, melan-A, acid phosphatase 5, dopachrome tautomerase, S100-beta and acid ceramidase were found to be among the most important genes for melanoma. The potential of the present bioinformatic approach is exemplified by its ability to identify differentiation and diagnostic markers already in use in clinical settings, such as protein S-100, a prognostic parameter in patients with metastatic melanoma and a screening marker for melanoma metastasis.


Subject(s)
Computational Biology/methods , Neoplasms/diagnosis , Neoplasms/genetics , Biomarkers, Tumor/analysis , Biomarkers, Tumor/genetics , Databases, Factual , Discriminant Analysis , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Melanoma/diagnosis , Melanoma/genetics , Melanoma/pathology , Multivariate Analysis , National Institutes of Health (U.S.) , Neoplasm Metastasis , Neoplasms/classification , Neoplasms/metabolism , Transcription, Genetic , Tumor Cells, Cultured , United States
20.
Bioorg Med Chem ; 10(9): 2899-904, 2002 Sep.
Article in English | MEDLINE | ID: mdl-12110310

ABSTRACT

The in vitro antitumor activities of 2,6-di-[2-(heteroaryl)vinyl]pyridines versus the standard National Cancer Institute 60 cell lines panel and of 2,6-di-[2-(heteroaryl)vinyl] pyridinium cations versus MCF7 (human mammary carcinoma) and LNCap (prostate carcinoma) cell lines are reported. Antiproliferative effects in both series are particularly evident for MCF7 mammary adenocarcinoma cells. Multivariate analysis of DNA microarray data for responsive tumor cell lines suggest a mechanistic pathway involving polyamine biosynthesis and prolactin signal transduction.


Subject(s)
Antineoplastic Agents/pharmacology , Pyridines/pharmacology , Pyridinium Compounds/pharmacology , Antineoplastic Agents/chemical synthesis , Female , Gene Expression Profiling , Humans , Male , Multivariate Analysis , Oligonucleotide Array Sequence Analysis , Polyamines/metabolism , Prolactin/metabolism , Pyridines/chemical synthesis , Pyridinium Compounds/chemical synthesis , Signal Transduction , Structure-Activity Relationship , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...